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Abstract

Let A; be the class of all unital separable simple C*-algebras A such that A®U has tracial
rank at most one for all UHF-algebras of infinite type. It has been shown that amenable
Z-stable C*-algebras in A; which satisfy the Universal Coefficient Theorem can be classified
up to isomorphism by the Elliott invariant. We show that A € A; if and only if A ® B has
tracial rank at most one for one of unital simple infinite dimensional AF-algebra B. In fact,
we show that A € A; if and only if A® B € A; for some unital simple AH-algebra B. Other
results regarding the tensor products of C*-algebras in A; are also obtained.

1 Introduction

The Elliott program of classification of amenable C*-algebras is to classify separable amenable
C*-algebras up to isomorphisms by its K-theoretic data known as the Elliott invariants. It is
a very successful program. Two important classes of unital separable simple C*-algebras, the
class of amenable separable purely infinite simple C*-algebras satisfying the Universal Coefficient
Theorem (UCT) and unital simple AH-algebras with no dimension growth are classified by their
Elliott invariants (see [9] and [5] and [6] among many literatures). There are a number of other
significant progress in the Elliott program. Related to this note, it has been shown that unital
separable amenable simple C*-algebras with tracial rank at most one which satisfy the UCT are
classifiable by the Elliott invariants and they are isomorphic to unital simple AH-algebras with
no dimension growth. More recently it was shown in [I7] that unital separable amenable simple
Z-stable C'*-algebras which satisfy the UCT and are rationally tracial rank at most one are also
classifiable by the Elliott invariants (see also [19] and [26]). This class is significantly larger than
the class of all unital simple AH-algebras with no dimension growth. A unital separable simple
C*-algebra A is said to be rationally tracial rank at most one if A ® U has tracial rank at most
one for every UHF-algebra U of infinite type. Denote by A; the class of all unital separable
simple C*-algebra which are rationally tracial rank at most one. A special unital separable
simple C*-algebra in A; which does not have finite tracial rank is the Jiang-Su algebra Z.
The range of the Elliott invariant for rationally tracial rank at most one has been characterized
and computed ([I8]). This class of C*-algebras includes C*-algebras whose ordered Ky-groups
may not have the Riesz interpolation property. The verification that a particular unital simple
C*-algebra is in the class A; was slightly eased when it was proved in [18] that, A € A; if and
only if A® U has tracial rank at most one for some UHF-algebra U of infinite type (instead for
all UHF-algebras of infinite type). Suppose A is a unital separable simple C*-algebra such that
A ® B has tracial rank at most one for some unital infinite dimensional simple AF-algebra B.
Does it follow that A € A;?7 We will answer this question affirmatively in this short note. In
fact, we will show that if A® B has tracial rank at most one for some unital infinite dimensional
separable simple C*-algebra B with tracial rank at most one then A € A;. This may provide a
better way to determine which C*-algebras are in A;.

For the classification purpose, we also consider C; the class of all unital separable simple
amenable C*-algebras which are rationally tracial rank at most one and which satisfy the UCT.
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We will show that if A and B are both in C;, then A ® B € C;. Now suppose that A € C; and
B has tracial rank at most one. Then, from the above, A ® B is also in C;. One may also ask
whether A® B has tracial rank at most one? We will give an affirmative answer to this question.

2 Preliminaries

Definition 2.1. let A be a C*-algebra. Let F and G be two subsets. Let ¢ > 0. We say that
F C. G if for each = € F, there exists y € G, such that ||z — y| <e.

If a,b € A, are two elements in a C*-algebra A, we write a < b if there exists z € A such
that z2* = a and z*x € bAD.

In C*-algebra A, let F C A be a finite subset and let p € A be a projection. We use pFp
to denote {pxp: x € F}. Let B be a subalgebra of A and let ¢ > 0. We write F C. B if
dist(z, B) < € for all z € F.

Definition 2.2. Denote by Z; the class of all finite direct sums of C*-algebras of the form
M, (C(]0,1])) (for different integers n € N).

Recall that a unital simple C*-algebra A has tracial rank at most one, if the following holds:
For any e > 0, any finite subset 7 C A and any a € A, \ {0}, there exists a projection p € A
and there exists a C*-subalgebra B C A with B € 7; and 15 = p such that

|lpz —xpl] < € for all x € F, (e2.1)
pFp C. B and (e2.2)
l1-p S a. (e2.3)

Note that, in definition 2.7 of [I3], Z; in the above is replaced by the class of all finite
direct sums of C*-algebras of the form M, (C(X)), where X is one of finite CW complexes
with dimension 1. According to Theorem 7.1 of [13], they are equivalent. If, in the above, Z; is
replaced by Zy, the class of finite dimensional C*-algebras, then A has tracial rank zero. If A has
tracial rank at most one, we write TR(A) < 1. If A has tracial rank zero, we write TR(A) = 0.

Notations: Let A be a unital C*-algebra. Denote by My (A) the set of all finite rank
matrices over A. Denote by T'(A) the tracial state space of A. If p € My (A), then p € M, (A)
for some integer n > 1. We write 7(p) for (7 ® T'r)(p), where T'r is the standard trace on M,,.

Denote by N the class of all unital separable amenable C*-algebras which satisfy the Uni-
versal Coefficient Theorem.

Denote by @ the UHF-algebra with (Ko(Q), Ko(Q)+, [1g]) = (Q,Q4, 1).

We use Ajg to denote the class of all unital separable simple C*-algebras A for which TR(A®
M) = 0 for all supernatural numbers p of infinite type

Use A; to denote the class of all unital separable simple C*-algebras A for which TR(A ®
M,)<1 for all supernatural numbers p of infinite type.

Use Cy to denote the class of all unital separable simple amenable C*-algebras A in N for
which TR(A ® M,) = 0 for all supernatural numbers p of infinite type.

Use C; to denote the class of all unital separable simple amenable C*-algebras A in N for
which TR(A ® M) < 1 for all supernatural numbers p of infinite type.

Definition 2.3. Let A be a unital C*-algebra with T'(A) # (). We say that A has the property
of strict comparison for projections, if 7(p) < 7(q) for all 7 € T'(A) implies that p < ¢ for all
projections in My (A).



3  Criterions for (C*-algebras to be rationally tracial rank at
most one

Theorem 3.1. Let A be a unital simple separable C*-algebra, and let C' be a unital infinite
dimensional simple AF-algebra. Suppose that AR C' has tracial rank at most one. Then A € A;.

Proof. Put B = A® Q. Let € > 0, a nonzero element a € By \ {0} and a finite subset 7 C B
be given. We may assume that [|a|| =1 and € < 1/4.

We will write A ® Q = limk_,oo(A & Mk!,jk), where ji. : AQ My — A® M(k+1)! by jk(a) =
a® 1ng,,,, forall a € A® My, k=1,2,.... Without loss of generality, we may assume that
F C A® My, for some k > 1.

Without loss of generality, we may assume that there exists a positive element a’ € A ®@ My,
such that |la — a/|| < e. Let

1 t > 2¢
fs(t): (1/€)t—1 €e<t<2e .
0 t<e

According to Proposition 2.2 and Lemma 2.3 (b) of [2I], fc(a') < a. Put ag = fe(a). As
llal| = 1, e < 1/4, it is clear that ag € (A ® M)+ \ {0}.

Write C' as limy,—00(Ch,2,,), where Cp, is a finite dimensional C*-algebra and where ),
Cim — Cia1, is a unital embedding. Since C'is an infinite dimensional unital simple AF-algebra,
we may write that

Com =My, &My, - &M, (e3.4)

s(m)?

where n; > k!, j =1,2,...,s(m) for all large m. Fix one of such m. Thus one obtains a projection
q € Cp, so that My, is a unital C*-subalgebra of ¢C,q. Put e = 1 ® ¢ and let ¢} : My — ¢Chnq
be a unital embedding. Define @1 : A® My — A® qChq by @1(a®@b) = a® @} (b) foralla € A
and b € M.

It follows from Theorem 3.6 of [I5] that e(A ® C)e has tracial rank no more that one.
Therefore there exists a projection p € e(A ® C)e and a C*-subalgebra [y € Z; (interval C*-
algebras) of e(A ® C')e with 17, = p,

lpx —ap|| < €/2 for all x € p1(F), (e3.5)
dist(pzp, ) < €/2 for all x € p1(F) and (e3.6)
1-p 5 eilao). (€3.7)

Let Ko = maxger{||z]|} and let K = max(Kjy,16). Choose a finite set Gy in Iy, such that
pFp Ceji6 Go- Let Gi be a finite generator set of Iy and let G = Go U G1 U {1y,}. Since Iy is
weakly semi-projective, according to Lemma 15.2.1 of [20], for n large enough, there exists a
homomorphism h: Iy — A ® (¢C,q) such that ||h(y) — y|| < ¢/K for all y € G. In particular,
h(p) is a projection in A ® (qCyq) such that ||[p — h(p)|| < €/8. As e < 1/4, we know that p and
h(p) are untarily equivalent.

It can be checked that

lh(p)x — zh(p)|| < 5e/8 for all x € pi(F), (e3.8)
dist(h(p)zh(p ) h(Ip)) < 11€/16 for all = € p1(F) and (€3.9)
—h(p) < ¢ilao). (e3.10)

To simplify notation, we may assume that Io C A® ¢C,q, where p € A® qC,,q for some large
n satisfying n > m. Write qCyq = My, @ My, @ - Myy,,. Note that kl|m; for j = 1,2,...,r,



as ¢y is unital. Put N = 377, m;. Therefore there is a unital embedding ¢, : ¢Cpng — M.
Consider ji : My — Mpyy and ¢ o ¢} : My — Mpyy. Since they both are unital, there is a
unitary u € My such that

Adu o ¢h o gy = jp.

Define o : A ® qCr,q — A ® My by
p2(a®b) = a® (Aduo gy(b))

for all a € A and b € qC)q.
Then

(p2o0@1)(c) =c for all c € A® M. (e3.11)

Put p1 = pa(p) €e AQ M1 C A®Q and D = po(ly) C A® My C A® Q with 1p = py.
Note also D € Z; (interval algebras). Moreover, by (e3.5]) and (e3.6]), we have

Ip1z — zp1[| = [l2(pr (x) — 1 (@)p)l| = [[pe1(z) — pr(x)pll < /2 for all x € F; (e3.12)
dist(prxp1, D) < dist(pe1(x)p, Iy) < €/2 for all x € F. (€3.13)

Moreover, by (e3.7),
1—p1 =2l —p) < p2(p1(a)) = a. (e3.14)

This implies that TR(A ® Q) < 1, which shows that A € A;.
[l

Lemma 3.2. Let A be a unital separable simple C*-algebra and let C be a unital simple AH-
algebra with Tor(Ky(C)) = {0} and with no dimension growth. Suppose that A ® C' has tracial
rank no more than one. Then A € A;.

Proof. Note that Tor(Ky(C)) = {0}, by Lemma 8.1 of [7] , Ko(C) is an unperforated Riesz
group. It follows from the Effros-Handelman-Shen theorem (Theorem 2.2 of [2]) that there
exists a unital separable simple AF-algebra B with

(Ko(B), Ko(B)+, [18]) = (Ko(C), Ko(C)+, [1c])- (e3.15)

We will show that TR(A® B) < 1. For that, let ¢ > 0, F C A® B be a finite subset and let
a € (A® B); \ {0}. Without loss of generality, we may assume that 1/2 > e, F is a subset of
the unit ball and ||a|| = 1.

We may assume that there are ay1,ay2,...a7, ) € A and by 1,by2,...,bs () € B such that

n(f)
If = api@bsll < €/16 for all f e F. (e3.16)
i=1

We may also assume that there exist z1,xg, ..., 2,4 € A and y1,y2, ..., Yn(q) € B such that

n(a)

la =" 2 @yl < €/16. (e3.17)
i=1
Let
K1 = n(a)+max{n(f): feF}, (e3.18)
Ky = max{||z;|| + |yl : 1 <i<n(a)} and (e3.19)
K3 = max{||as;| +|bsill : 1 <i<n(f) and fe F}. (e3.20)
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Put a; = fc(a) with f. as defined in the proof of Theorem B.11

As B is an AF-algebra and C has stable rank one, it is known that there exists a unital
homomorphism ¢} : B — C such that (¢}). gives the identification (e3.15]). Define ¢; :
A®B — A®C by ¢1 =ida®¢). Now since TR(A® C) < 1, there exists a projection ¢ € AQC

and a C*-subalgebra D € Z; such that 1p = p and

lpr — zp|| < €/16 for all x € ¢1(F),
dist(pzp, D) < €/16 for all x € ¢1(F) and
1-p 3 ¢ia).

(e3.21)
(e3.22)
(e3.23)

Let k € KL(C, B) such that x|k, () = 0 and &g, ) = (@) Tt follows from [I4] that

there exists a unital embedding ¢/, : C'— B such that

(5] = K
Let
G={yi:1<i<n(a)}U{bs;:1<i<n(f) and f e F}.
Put
5— €
16K KoK3'
Note that

(05 0 ¢4] = lidp] in KL(B,B).
According to Lemma 4.2 of [3], there exists a unitary u € B such that

l(Aduo @)y o))(y) —y|| <4 for all y €g.

(e3.24)

(e3.25)

(e3.26)

(€3.27)

(e3.28)

Define 3 : A® C — A® B by p2 =ida ® (Aduo ¢h). Put p1 = pa(p) and Dy = ¢o(D).

Then, one estimates, by (€3.28) and (e3.14]), that
lp20p1(f) — fll < €/16 +€/16 + K1 K30 < 3¢/16 for all f € F.
Similarly,
g2 0 p1(a) — all < €/16 + ¢/16 + K1 Ka8 < 3¢/16
Thus, we have, by applying (e3.21]) and (e3.29]), that

[p1z —apil] < lp1z — @2(p)p2 0 1 (2)||
+le2(p)p2 0 p1(x) — w2 0 p1(z)p2(P)|l
+l¢2 0 p1(z)p2(p) — zpi|
< 3¢/16 + ||pp1(x) — @1(x)p|| + 3€/16 < Te/16

for all z € F. Similarly,
dist(prap1, D1) < 7e/16 for all x € F.
Also, by (e3.23),

1—p1 S pa(p1(ar)).

(e3.29)



In other words,

L—p1 S fe(p20p1(a)). (e3.37)
From (e330) and Proposition 2.2 and Lemma 2.3 (b) of [21], we have
fe(pa o pi1(a)) S a. (e3.38)
It follows that
1—p1 Sa. (e3.39)

This proves that A ® B has tracial rank no more than one.
O

Theorem 3.3. Let A be a unital separable simple C*-algebra. Suppose that TR(A® C) <1 for
some unital amenable separable simple C*-algebra C' such that TR(C) < 1 and C satisfies the
UCT. Then A € A;j.

Proof. Suppose that TR(A® C') < 1. We may assume that C' has infinite dimension. Otherwise,
as C is simple, C = M,,(C) for some n € N. With TR(M,,(A)) < 1, according to Theorem 3.6
in [I5], TR(A) < 1. Therefore A € A;.

Now assume that C'is infinitely dimensional. As TR(A®C) < 1, we have TR((A®C)®Q) <
1. Note that (A®C)RQ = A® (C®Q). As TR(C) < 1, it follows that TR(C ® Q) < 1. Since
C' is amenable and satisfies UCT, C' ® @) is also a unital separable amenable simple C*-algebra
which satisfies the UCT. It follows from Theorem 10.4 of [I5] that C' ® @ is a unital simple
AH-algebra with no dimension growth. One computes that Ky(C ® @) is torsion free. It follows
from Lemma B2l that A € A;. O

Corollary 3.4. Let A be a unital separable simple C*-algebra. Suppose that TR(A® C) = 0
for some unital amenable separable simple C*-algebra with TR(C) < 1 which satisfies the UCT.
Then A € Ayp.

Proof. The proof is similar to that of Theorem O

Corollary 3.5. Let A be a unital separable simple C*-algebra. Suppose that TR(A® C) <1
for some unital simple AH-algebra C. Then A € A;.

Proof. Note that by Theorem 10.4 of [I5] , C®(Q is a unital simple AH-algebra with no dimension
growth. Since TR(A® C) <1, TR(A®C®Q) < 1. O

Proposition 3.6. Let A be a unital separable simple C*-algebra. Then the following are quiv-
alent:

1) Ae A.

2) AU € Ay for some UHF-algebra U of infinite type.

3) AU € A; for any UHF-algebra U of infinite type.

Proof. “3) = 2)” is obvious.

“2) = 1)”: Suppose that A ® U € A; for some UHF-algebra U of infinite type. Then
TRIAU ®U) < 1. But (A®U)®U = A®U. We conclude that TR(A® U) < 1. This implies
1) holds.

“l) = 3)”: Since A € A;, TR(A® U) < 1 for any UHF-algebra U of infinite type. In
particular, A U € A;.

[l



4 Tensor Products

Proposition 4.1. Let A and B be two unital amenable separable simple C*-algebras in C1. Then
AR B e (.

Proof. Let A, B € C;. Then
(A®B)@Q=(A®B)® (Q®Q)Z(A®Q)® (B® Q).

Since both A and B are in C;, A ® Q and B ® @ have tracial rank no more than one and
satisfy the UCT. Therefore each of them is isomorphic to some unital simple AH-algebars with
no dimension growth. It is then easy to see that (A ® Q) ® (B ® @) can be written as a unital
simple AH-algebra with no dimension growth, which implies that TR(A® B® Q) < 1.

O

Theorem 4.2. Let A be a unital separable simple C*-algebra. Suppose that there exists a unital
separable simple amenable C*-algebra B € Cy such that A® B € Ay, then A € A;.

Proof. Since A Be A, TRIA® B® Q) < 1. As B € C;, we have that B ® @) satisfies UCT
and TR(B ® Q) < 1. By Lemma 10.9 and Theorem 10.10 of [I2], B ® @ is a unital simple
AH-algebra with no dimension growth. Note that Tor(Ky(B ® Q)) = 0. It follows from Lemma
that A € A;.

[l

We now consider the converse of Theorem in the following sense. Let A € A;. Is it
true that TR(A ® C') < 1if C' is a unital separable infinite dimensional simple C*-algebra with
TR(C) <17

Definition 4.3. Let A be a unital separable simple C*-algebra. We say A has the property of
tracially approximate divisibility, if the following holds: For any € > 0, any finite subset F C A,
any a € Ay \ {0}, any integer N > 1, there exists a projection p € A, a finite dimensional
(C*-subalgebra B C A with 1 = p and

such that n; > N for j =1,2,...,k, and

lpx — zp|| < € for all z € F (e4.40)
llb(pxp) — (pxp)b|| < € for all x € F,b e B with ||b|| <1 and (e4.41)
1-p=Sa. (e4.42)

It is proved in Theorem 5.4 of [I2] that every unital infinite dimensional separable simple
C*-algebra A with TR(A) <1 is tracially approximately divisible.

Lemma 4.4. Let A be a unital infinite dimensional separable C*-algebra and let B be a unital
separable simple C*-algebra which is tracially approximately divisible. Then, for any non-zero
projection p € A ® B and any integer n > 1, there are n + 1 mutually orthogonal non-zero
projections pi, Pz, ...,Pn and ppir1 such that p is equivalent to Z;Lill pj and [p1] = [pa] = - =

[Pn]-

Proof. Let C = A® B. Then pCp is a unital infinite dimensional simple C*-algebra. Therefore
pCp contains a positive element 0 < fy < 1 with infinite spectrum. From here, using the fact
that pCp is simple, one obtains two non-zero mutually orthogonal elements f1, fo < fo such



that 2[f1] < [p] in the Cuntz semigroup. Fix n > 1. There are K € N, ay,as,...,ax € A and
b1,bo,...,bg € B such that

K
lp =) ai @bill < 1/64(n + 1)*. (e4.43)

i=1
Let M = K?max{(|la;|| + 1)(]|b;]| +1) : 1 <4 < K}. Since B is tracially approximately
divisible, there is a projection e € B and D C B with 1p = e,
with n; > 4n +1, j = 1,2,...,m, such that
lebj —bjel < 1/64(M +1)(n+1)%j=1,2,.., K, (e4.44)
|debje — ebjed|| < 1/64(M +1)(n + 1) (e4.45)
for all d € D with ||d|| <1, j=1,2,..,K ( )
and 1p—e < f1. ( )
It follows that
lep —pel| < 1/64(n+ 1), (e4.48)
|depe — eped|| < 1/64(n + 1) ( )
for all d e D with ||d|| <1, j=1,2,...,L (e4.50)
and lagp —la®e < fi. ( )

One notes that epe # 0, by (e4.51]).
It is easy to produce a projection ey € D and n — 1 unitaries u,us, ..., up—1 € D such that

eo, ujeou; (for j = 1,2,..,n — 1) are mutually orthogonal projections in D. By (e4.50), one
obtains a projection pp, unitaries vi,vs, ..., v,—1 such that

P1, V1 P1U1, U3P102, ooy Uy _1P1Vp—1 (e4.52)

are mutually orthogonal projections such that

[p1 — eopeol| < 1/16(n + 1)?, (e4.53)

[vip1v; — ujeopeous|| < 1/16(n +1),, j=1,2,..,n —1 and (e4.54)
n—1

lexper — (p1 @ > vip1v;)l| < 1/16, (e4.55)
j=1

where e; = eo@zyz_ll u;eouj € D. Define pj11 = Ujplvj, 7 =1,2,...,n—1. There is a projection

Pnt1 € (1 —e1)(A® B)(1 — e1) such that

[Pni1 — (1 —e)p(l —e1)|| < 1/16(M + 1)(n + 1) (e4.56)

One verifies that p is equivalent to ZZI% pi. The lemma then follows.

O

Lemma 4.5. Let A be a unital separable infinite dimensional simple C*-algebra with T(A) # 0
and B be a unital separable simple C*-algebra which is tracially approximately divisible and also
has at least one tracial state. Suppose that A ® B has the strictly comparison for projections.
Then, for any non-zero projections p,q € A® B and any integer n > 1, there are n+ 1 mutually
orthogonal non-zero projections pi,p2,...,Pn,Pn+1 Such that p = p1 + ... + py + Ppy1, pj 18
equivalent to p1 for 5 =1,2,....m, ppi1 Sp1 and ppai1 S q.



Proof. The proof is similar to that of 4.4l Put C'= A ® B. Choose an integer m > 1 such that
1
m+n

inf{r(q) : 7€ T(C)} > (e4.57)

By Lemma [£4] there is a non-zero projection py < p such that 7(py) < 4(m—1+n) for all 7 € T(C).
Let d = inf{7(pg) : 7 € T(A)} > 0.
Since B is tracially approximately divisible, as in the proof of Lemma [£4] there exists a
projection e € B and D C B with 1p =e,

D:Mrl @MTQGB@MTIC

with
; <d/2, j=12 ..k (e 4.58)
such that ]
lep — pe|| < m (4.59)
d(epe) — (epe)d|| < m for all d€ D with |d <1  (e4.60)

and 1—e < po. (e4.61)

By (e4.58), there is a projection ey and m — 1 uniatries ui,us,...,u,—1 € D such that
€0, U eQUT, USLQUD, ..., Uy _1€0Up—1 are mutually orthogonal projections in D such that

n—1
7(e — (eo + Zu;eouj)) <d for all 7€ T(A). (e4.62)
j=1
It follows that
n—1
(e —(eo + Z ujeou;)) < po- (e4.63)
j=1

We then obtain a projection p; € C and unitaries vy, vs,...,v,—1 such that pi, vipivi, ...,
vy _1P1Un—1 are mutually orthogonal and

|p1 — eopeol| < 1/16(n + 1), (e4.64)

[vip1v; — ujeopeouy|| < 1/16(n + 1) and (e4.65)
n—1

lexper — (p1 + > vip1vy)l < 1/16, (4.66)
j=1

where e; = eg + Z;L;ll u;eouj € D. There is also a projection p,y1 € (1—e1)C(1—eq) such that

i1 — (1 —e)p(l —e1)|| < 1/64(n + 1)% (e4.67)
Put pj11 = v;fplfuj, 7=1,2,...,n —1. Thus, we have

n+1

Pl =1>_pjl. (e4.68)
j=1

We see that pi,pa, ..., pn are equivalent. Since C has strictly comparison, by (eZ£57), (€453)
and (e4.62),

Prnt1 Sp1oand ppi1 S g



Lemma 4.6. Let A € Cy. Suppose that B is a unital separable amenable simple C*-algebra with
TR(B) <1 and satisfies UCT. Then Ko(A ® B) has the Reisz interpolation property.

Proof. Since A € C; and TR(B) < 1, by Theorem [A.J] A ® B € C;. It follows from [I8] that
Ky(A ® B) is rationally Reisz. In other words, if we have x1,x9,y1,y2 € Ko(A ® B) such that
x; < yj, i,j = 1,2, then there exists z € Ko(A ® B) and there are integers m,n € N such that

mx; < nz and nz < my;, i,j =1,2. (e4.69)

Denote by S, (Ko(A ® B)) the state space of Ko(A ® B). If mzy = nz = my;, we claim that
x1 = y1. Otherwise y; = x1 + w for some w € Tor(Ky(A ® B)). But 21 < y;. It would imply
that w > 0. By Il A ® B € C;. It follows that Ky(A ® B) is weakly unperforated. if w # 0,
s(w) > 0 for all states s € S, (Ko(A® B)). But this is impossible since mw = 0. Now if z; = y,
set z1 = 1. Then

v <yi=z=121<y i,5=12

Let us consider the case that mz; # nz, i = 1,2. It follows that
s(x;) < (n/m)s(z) < s(y;) for all s € S,(Ko(A® B)), i,j=1,2. (e4.70)

We may assume that z; € Ko(A® B)4 for i = 1,2. It follows that z € Ko(A® B)4 \ {0}. Note
that S, (Ko(A ® B)) is compact. There exists 1 > d > 0 such that

s(x;) < (n/m)s(z) —d < s(y;) for all s € Sy(Ko(A® B)), i,j=1,2. (e4.71)

By replacing z by kz for some k € N, if necessarily, we may assume that 0 < n/m < 1. Then,
by Lemma [L.3] there is w € Ko(A ® B)4 such that nz = mw + wy and

s(wp) < d for all s € Sy (Ko(A® B)). (e4.72)
Let z; = mw. Note that n/m < 1, we then have
s(x;) < s(z1) < s(y;) for all z € S, (Ko(A® B)). (e4.73)

Note that, by Corollary 8.4 of [16], B is Z-stable. It follows that A ® B is Z-stable. According
to Corollary 4.10 of [22], we have that

ri <z <y; i,j =12 (e4.74)

This shows that Ko(A ® B) has the Riesz interpolation property.
O

Theorem 4.7. Let A € Cy. Then, for any unital infinite dimensional simple AH-algebra B with
slow dimension growth, A ® B is a unital simple AH-algebra with no dimension growth.

Proof. Since A € Cy, it follows from L Ilthat A® B € C;. By LemmaldL6] Ky(A® B) has the Riesz
interpolation property. Since B is an infinite dimensional simple AH-algebra, Ky(A ® B) # Z.
Moreover the canonical map r: T(A®B) — Sy, (Ko(A®B)) maps the extremal points to extremal
points. It follows from [24] that there is a unital simple AH-algebra C' with no dimension growth
such that the Elliott invariant is exactly the same as that of A® B. According to Theorem 10.4
of [15], we have that A ® B = C.

O

We end the note by the following summarization:
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Theorem 4.8. Let A € N be a unital separable simple amenable C*-algebra that satisfies the
UCT. Then the following are equivalent.

(1) A € Cq;

(2) TR(A® Q) < 1;

(3) A® Q € Ay

(4) TR(A® B) <1 for some unital infinite dimensional simple AF-algebra B;

(5) TR(A® B) <1 for all unital simple infinite dimensional AF-algebras B;

(6) A® B € Ay for some unital simple infinite dimensional AF-algebra B;

(7) A® B € Ay for all unital simple infinite dimensional AF-algebras B;

(8) TR(A ® B) < 1 for some unital infinite dimensional simple AH-algebra B with no
dimension growth;

(9) TR(A® B) <1 for all unital simple infinite dimensional AH-algebras B with no dimen-
siton growth;

(10) Ao B € Ay for some unital simple infinite dimensional AH-algebra B with no dimension
growth;

(11) A® B € A; for all unital simple infinite dimensional AH-algebra B with no dimension
growth;

(12) A® B € Ay for all unital simple infinite dimensional C*-algebra B in Cy;

(13) A® B € Ay for some unital simple infinite dimensional C*-algebra B € C;.

Proof. Note that “(1) = (2)7, “(2) = (3)”, “(5) = (4)7, “(4) = (6)”, “(7) = (6)”, “(9) = (8)7,
“9) = (10)7, “(11) = (10)”, “(11) = (7)”, “(12) = (11)”?, “(12) = (7)” and “(12) = (13)” are
straightforward from the statement.

That “(1) = (5)” and “(1) = (9)” follow from 7l To see that “(1) = (12),” let A € C;
and B € C;. Then TR(B® Q) < 1. So B® @ is a unital simple infinite dimensional AH-algebra
with no dimension growth. Since “(1) = (9)”, this implies that TR(A® (B®Q)) < 1. It follows
that A® B € A;.

For “(13) = (1)”, one has TR(A® B ® Q) < 1. It follows that TR(A ® (B ® Q)) < 1.
Since TR(B ® @) < 1, again, B ® @ is a unital simple infinite dimensional AH-algebra with no
dimension growth. It follows from B3] that A € A;. As A € NV, it is in C;.

That “(3) = (1)” follows from B:6l and “(4) = (1) follows from Bl

For “(6) = (4)”, one considers A ® B ® ) and notes B ® @ is a unital simple infinite
dimensional AF-algebra.

That “(8) = (4)” follows from B3]

The rest of implications follow similarly as established previously.
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