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Tensor Products of Classifiable C∗-algebras

Huaxin Lin and Wei Sun

Abstract

LetA1 be the class of all unital separable simple C∗-algebrasA such that A⊗U has tracial
rank at most one for all UHF-algebras of infinite type. It has been shown that amenable
Z-stable C∗-algebras in A1 which satisfy the Universal Coefficient Theorem can be classified
up to isomorphism by the Elliott invariant. We show that A ∈ A1 if and only if A⊗ B has
tracial rank at most one for one of unital simple infinite dimensional AF-algebra B. In fact,
we show that A ∈ A1 if and only if A⊗B ∈ A1 for some unital simple AH-algebra B. Other
results regarding the tensor products of C∗-algebras in A1 are also obtained.

1 Introduction

The Elliott program of classification of amenable C∗-algebras is to classify separable amenable
C∗-algebras up to isomorphisms by its K-theoretic data known as the Elliott invariants. It is
a very successful program. Two important classes of unital separable simple C∗-algebras, the
class of amenable separable purely infinite simple C∗-algebras satisfying the Universal Coefficient
Theorem (UCT) and unital simple AH-algebras with no dimension growth are classified by their
Elliott invariants (see [9] and [5] and [6] among many literatures). There are a number of other
significant progress in the Elliott program. Related to this note, it has been shown that unital
separable amenable simple C∗-algebras with tracial rank at most one which satisfy the UCT are
classifiable by the Elliott invariants and they are isomorphic to unital simple AH-algebras with
no dimension growth. More recently it was shown in [17] that unital separable amenable simple
Z-stable C∗-algebras which satisfy the UCT and are rationally tracial rank at most one are also
classifiable by the Elliott invariants (see also [19] and [26]). This class is significantly larger than
the class of all unital simple AH-algebras with no dimension growth. A unital separable simple
C∗-algebra A is said to be rationally tracial rank at most one if A⊗U has tracial rank at most
one for every UHF-algebra U of infinite type. Denote by A1 the class of all unital separable
simple C∗-algebra which are rationally tracial rank at most one. A special unital separable
simple C∗-algebra in A1 which does not have finite tracial rank is the Jiang-Su algebra Z.
The range of the Elliott invariant for rationally tracial rank at most one has been characterized
and computed ([18]). This class of C∗-algebras includes C∗-algebras whose ordered K0-groups
may not have the Riesz interpolation property. The verification that a particular unital simple
C∗-algebra is in the class A1 was slightly eased when it was proved in [18] that, A ∈ A1 if and
only if A⊗U has tracial rank at most one for some UHF-algebra U of infinite type (instead for
all UHF-algebras of infinite type). Suppose A is a unital separable simple C∗-algebra such that
A ⊗ B has tracial rank at most one for some unital infinite dimensional simple AF-algebra B.
Does it follow that A ∈ A1? We will answer this question affirmatively in this short note. In
fact, we will show that if A⊗B has tracial rank at most one for some unital infinite dimensional
separable simple C∗-algebra B with tracial rank at most one then A ∈ A1. This may provide a
better way to determine which C∗-algebras are in A1.

For the classification purpose, we also consider C1 the class of all unital separable simple
amenable C∗-algebras which are rationally tracial rank at most one and which satisfy the UCT.
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We will show that if A and B are both in C1, then A ⊗ B ∈ C1. Now suppose that A ∈ C1 and
B has tracial rank at most one. Then, from the above, A ⊗ B is also in C1. One may also ask
whether A⊗B has tracial rank at most one? We will give an affirmative answer to this question.

2 Preliminaries

Definition 2.1. let A be a C∗-algebra. Let F and G be two subsets. Let ǫ > 0. We say that
F ⊂ǫ G if for each x ∈ F , there exists y ∈ G, such that ‖x− y‖ < ǫ.

If a, b ∈ A+ are two elements in a C∗-algebra A, we write a . b if there exists x ∈ A such
that xx∗ = a and x∗x ∈ bAb.

In C∗-algebra A, let F ⊂ A be a finite subset and let p ∈ A be a projection. We use pFp
to denote {pxp : x ∈ F}. Let B be a subalgebra of A and let ǫ > 0. We write F ⊂ǫ B if
dist(x,B) < ǫ for all x ∈ F .

Definition 2.2. Denote by I1 the class of all finite direct sums of C∗-algebras of the form
Mn(C([0, 1])) (for different integers n ∈ N).

Recall that a unital simple C∗-algebra A has tracial rank at most one, if the following holds:
For any ǫ > 0, any finite subset F ⊂ A and any a ∈ A+ \ {0}, there exists a projection p ∈ A
and there exists a C∗-subalgebra B ⊂ A with B ∈ I1 and 1B = p such that

‖px− xp‖ < ǫ for all x ∈ F , (e 2.1)

pFp ⊂ǫ B and (e 2.2)

1− p . a. (e 2.3)

Note that, in definition 2.7 of [13], I1 in the above is replaced by the class of all finite
direct sums of C∗-algebras of the form Mn(C(X)), where X is one of finite CW complexes
with dimension 1. According to Theorem 7.1 of [13], they are equivalent. If, in the above, I1 is
replaced by I0, the class of finite dimensional C∗-algebras, then A has tracial rank zero. If A has
tracial rank at most one, we write TR(A) ≤ 1. If A has tracial rank zero, we write TR(A) = 0.

Notations: Let A be a unital C∗-algebra. Denote by M∞(A) the set of all finite rank
matrices over A. Denote by T (A) the tracial state space of A. If p ∈ M∞(A), then p ∈ Mn(A)
for some integer n ≥ 1. We write τ(p) for (τ ⊗ Tr)(p), where Tr is the standard trace on Mn.

Denote by N the class of all unital separable amenable C∗-algebras which satisfy the Uni-
versal Coefficient Theorem.

Denote by Q the UHF-algebra with (K0(Q),K0(Q)+, [1Q]) = (Q,Q+, 1).
We use A0 to denote the class of all unital separable simple C∗-algebras A for which TR(A⊗

Mp) = 0 for all supernatural numbers p of infinite type
Use A1 to denote the class of all unital separable simple C∗-algebras A for which TR(A ⊗

Mp)≤1 for all supernatural numbers p of infinite type.
Use C0 to denote the class of all unital separable simple amenable C∗-algebras A in N for

which TR(A⊗Mp) = 0 for all supernatural numbers p of infinite type.
Use C1 to denote the class of all unital separable simple amenable C∗-algebras A in N for

which TR(A⊗Mp) ≤ 1 for all supernatural numbers p of infinite type.

Definition 2.3. Let A be a unital C∗-algebra with T (A) 6= ∅. We say that A has the property
of strict comparison for projections, if τ(p) < τ(q) for all τ ∈ T (A) implies that p . q for all
projections in M∞(A).
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3 Criterions for C∗-algebras to be rationally tracial rank at

most one

Theorem 3.1. Let A be a unital simple separable C∗-algebra, and let C be a unital infinite
dimensional simple AF-algebra. Suppose that A⊗C has tracial rank at most one. Then A ∈ A1.

Proof. Put B = A ⊗Q. Let ǫ > 0, a nonzero element a ∈ B+ \ {0} and a finite subset F ⊂ B
be given. We may assume that ‖a‖ = 1 and ǫ < 1/4.

We will write A⊗Q = limk→∞(A⊗Mk!, jk), where jk : A⊗Mk! → A⊗M(k+1)! by jk(a) =
a ⊗ 1M(k+1)

for all a ∈ A ⊗Mk!, k = 1, 2, .... Without loss of generality, we may assume that
F ⊂ A⊗Mk! for some k ≥ 1.

Without loss of generality, we may assume that there exists a positive element a′ ∈ A⊗Mk!

such that ‖a− a′‖ < ǫ. Let

fǫ(t) =







1 t ≥ 2ǫ
(1/ǫ)t − 1 ǫ < t < 2ǫ
0 t ≤ ǫ

.

According to Proposition 2.2 and Lemma 2.3 (b) of [21], fǫ(a
′) . a. Put a0 = fǫ(a

′). As
‖a‖ = 1, ǫ < 1/4, it is clear that a0 ∈ (A⊗Mk!)+ \ {0}.

Write C as limm→∞(Cm, ı′m), where Cm is a finite dimensional C∗-algebra and where ı′m :
Cm → Cm+1, is a unital embedding. Since C is an infinite dimensional unital simple AF-algebra,
we may write that

Cm = Mn1 ⊕Mn2 ⊕ · · · ⊕Mns(m)
, (e 3.4)

where nj ≥ k!, j = 1, 2, ..., s(m) for all large m. Fix one of such m. Thus one obtains a projection
q ∈ Cm so that Mk! is a unital C∗-subalgebra of qCmq. Put e = 1⊗ q and let ϕ′

1 : Mk! → qCmq
be a unital embedding. Define ϕ1 : A⊗Mk! → A⊗ qCmq by ϕ1(a⊗ b) = a⊗ϕ′

1(b) for all a ∈ A
and b ∈ Mk!.

It follows from Theorem 3.6 of [15] that e(A ⊗ C)e has tracial rank no more that one.
Therefore there exists a projection p ∈ e(A ⊗ C)e and a C∗-subalgebra I0 ∈ I1 (interval C∗-
algebras) of e(A⊗ C)e with 1I0 = p,

‖px− xp‖ < ǫ/2 for all x ∈ ϕ1(F), (e 3.5)

dist(pxp, I0) < ǫ/2 for all x ∈ ϕ1(F) and (e 3.6)

1− p . ϕ1(a0). (e 3.7)

Let K0 = maxx∈F{‖x‖} and let K = max(K0, 16). Choose a finite set G0 in I0, such that
pFp ⊂ǫ/16 G0. Let G1 be a finite generator set of I0 and let G = G0 ∪ G1 ∪ {1I0}. Since I0 is
weakly semi-projective, according to Lemma 15.2.1 of [20], for n large enough, there exists a
homomorphism h : I0 → A ⊗ (qCnq) such that ‖h(y) − y‖ < ǫ/K for all y ∈ G. In particular,
h(p) is a projection in A⊗ (qCnq) such that ‖p− h(p)‖ < ǫ/8. As ǫ < 1/4, we know that p and
h(p) are untarily equivalent.

It can be checked that

‖h(p)x− xh(p)‖ < 5ǫ/8 for all x ∈ ϕ1(F), (e 3.8)

dist(h(p)xh(p), h(I0)) < 11ǫ/16 for all x ∈ ϕ1(F) and (e 3.9)

1− h(p) . ϕ1(a0). (e 3.10)

To simplify notation, we may assume that I0 ⊂ A⊗qCnq, where p ∈ A⊗qCnq for some large
n satisfying n ≥ m. Write qCnq = Mm1 ⊕ Mm2 ⊕ · · ·Mmr

. Note that k!|mj for j = 1, 2, ..., r,
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as ϕ′
1 is unital. Put N =

∑r
j=1mj . Therefore there is a unital embedding ϕ′

2 : qCnq → MN !.
Consider jk : Mk! → MN ! and ϕ′

2 ◦ ϕ′
1 : Mk! → MN !. Since they both are unital, there is a

unitary u ∈ MN ! such that
Adu ◦ ϕ′

2 ◦ ϕ
′
1 = jk.

Define ϕ2 : A⊗ qCnq → A⊗MN ! by

ϕ2(a⊗ b) = a⊗ (Ad u ◦ ϕ′
2(b))

for all a ∈ A and b ∈ qCnq.
Then

(ϕ2 ◦ ϕ1)(c) = c for all c ∈ A⊗Mk!. (e 3.11)

Put p1 = ϕ2(p) ∈ A ⊗MN ! ⊂ A ⊗ Q and D = ϕ2(I0) ⊂ A ⊗MN ! ⊂ A ⊗ Q with 1D = p1.
Note also D ∈ I1 (interval algebras). Moreover, by (e 3.5) and (e 3.6), we have

‖p1x− xp1‖ = ‖ϕ2(pϕ1(x)− ϕ1(x)p)‖ = ‖pϕ1(x)− ϕ1(x)p‖ < ǫ/2 for all x ∈ F ; (e 3.12)

dist(p1xp1,D) ≤ dist(pϕ1(x)p, I0) < ǫ/2 for all x ∈ F . (e 3.13)

Moreover, by (e 3.7),

1− p1 = ϕ2(1− p) . ϕ2(ϕ1(a)) = a. (e 3.14)

This implies that TR(A⊗Q) ≤ 1, which shows that A ∈ A1.

Lemma 3.2. Let A be a unital separable simple C∗-algebra and let C be a unital simple AH-
algebra with Tor(K0(C)) = {0} and with no dimension growth. Suppose that A⊗ C has tracial
rank no more than one. Then A ∈ A1.

Proof. Note that Tor(K0(C)) = {0}, by Lemma 8.1 of [7] , K0(C) is an unperforated Riesz
group. It follows from the Effros-Handelman-Shen theorem (Theorem 2.2 of [2]) that there
exists a unital separable simple AF-algebra B with

(K0(B),K0(B)+, [1B ]) = (K0(C),K0(C)+, [1C ]). (e 3.15)

We will show that TR(A⊗B) ≤ 1. For that, let ǫ > 0, F ⊂ A⊗B be a finite subset and let
a ∈ (A ⊗ B)+ \ {0}. Without loss of generality, we may assume that 1/2 > ǫ, F is a subset of
the unit ball and ‖a‖ = 1.

We may assume that there are af,1, af,2, ...af,n(f) ∈ A and bf,1, bf,2, ..., bf,n(f) ∈ B such that

‖f −

n(f)
∑

i=1

af,i ⊗ bf,i‖ < ǫ/16 for all f ∈ F . (e 3.16)

We may also assume that there exist x1, x2, ..., xn(a) ∈ A and y1, y2, ..., yn(a) ∈ B such that

‖a−

n(a)
∑

i=1

xi ⊗ yi‖ < ǫ/16. (e 3.17)

Let

K1 = n(a) + max{n(f) : f ∈ F}, (e 3.18)

K2 = max{‖xi‖+ ‖yi‖ : 1 ≤ i ≤ n(a)} and (e 3.19)

K3 = max{‖af,i‖+ ‖bf,i‖ : 1 ≤ i ≤ n(f) and f ∈ F}. (e 3.20)
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Put a1 = fǫ(a) with fǫ as defined in the proof of Theorem 3.1.
As B is an AF-algebra and C has stable rank one, it is known that there exists a unital

homomorphism ϕ′
1 : B → C such that (ϕ′

1)∗ gives the identification (e 3.15). Define ϕ1 :
A⊗B → A⊗C by ϕ1 = idA⊗ϕ′

1. Now since TR(A⊗C) ≤ 1, there exists a projection q ∈ A⊗C
and a C∗-subalgebra D ∈ I1 such that 1D = p and

‖px− xp‖ < ǫ/16 for all x ∈ ϕ1(F), (e 3.21)

dist(pxp,D) < ǫ/16 for all x ∈ ϕ1(F) and (e 3.22)

1− p . ϕ1(a1). (e 3.23)

Let κ ∈ KL(C,B) such that κ|K1(C) = 0 and κ|K0(C) = (ϕ′
1)

−1
∗0 . It follows from [14] that

there exists a unital embedding ϕ′
2 : C → B such that

[ϕ′
2] = κ. (e 3.24)

Let

G = {yi : 1 ≤ i ≤ n(a)} ∪ {bf,i : 1 ≤ i ≤ n(f) and f ∈ F}. (e 3.25)

Put

δ =
ǫ

16K1K2K3
. (e 3.26)

Note that

[ϕ′
2 ◦ ϕ

′
1] = [idB ] in KL(B,B). (e 3.27)

According to Lemma 4.2 of [3], there exists a unitary u ∈ B such that

‖(Adu ◦ ϕ′
2 ◦ ϕ

′
1)(y)− y‖ < δ for all y ∈ G. (e 3.28)

Define ϕ2 : A⊗ C → A⊗B by ϕ2 = idA ⊗ (Adu ◦ ϕ′
2). Put p1 = ϕ2(p) and D1 = ϕ2(D).

Then, one estimates, by (e 3.28) and (e 3.16), that

‖ϕ2 ◦ ϕ1(f)− f‖ < ǫ/16 + ǫ/16 +K1K3δ < 3ǫ/16 for all f ∈ F . (e 3.29)

Similarly,

‖ϕ2 ◦ ϕ1(a)− a‖ < ǫ/16 + ǫ/16 +K1K2δ < 3ǫ/16 (e 3.30)

Thus, we have, by applying (e 3.21) and (e 3.29), that

‖p1x− xp1‖ ≤ ‖p1x− ϕ2(p)ϕ2 ◦ ϕ1(x)‖ (e 3.31)

+‖ϕ2(p)ϕ2 ◦ ϕ1(x)− ϕ2 ◦ ϕ1(x)ϕ2(p)‖ (e 3.32)

+‖ϕ2 ◦ ϕ1(x)ϕ2(p)− xp1‖ (e 3.33)

< 3ǫ/16 + ‖pϕ1(x)− ϕ1(x)p‖+ 3ǫ/16 < 7ǫ/16 (e 3.34)

for all x ∈ F . Similarly,

dist(p1xp1,D1) < 7ǫ/16 for all x ∈ F . (e 3.35)

Also, by (e 3.23),

1− p1 . ϕ2(ϕ1(a1)). (e 3.36)
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In other words,

1− p1 . fǫ(ϕ2 ◦ ϕ1(a)). (e 3.37)

From (e 3.30) and Proposition 2.2 and Lemma 2.3 (b) of [21], we have

fǫ(ϕ2 ◦ ϕ1(a)) . a. (e 3.38)

It follows that

1− p1 . a. (e 3.39)

This proves that A⊗B has tracial rank no more than one.

Theorem 3.3. Let A be a unital separable simple C∗-algebra. Suppose that TR(A⊗C) ≤ 1 for
some unital amenable separable simple C∗-algebra C such that TR(C) ≤ 1 and C satisfies the
UCT. Then A ∈ A1.

Proof. Suppose that TR(A⊗C) ≤ 1. We may assume that C has infinite dimension. Otherwise,
as C is simple, C ∼= Mn(C) for some n ∈ N. With TR(Mn(A)) ≤ 1, according to Theorem 3.6
in [15], TR(A) ≤ 1. Therefore A ∈ A1.

Now assume that C is infinitely dimensional. As TR(A⊗C) ≤ 1, we have TR((A⊗C)⊗Q) ≤
1. Note that (A⊗C)⊗Q ∼= A⊗ (C ⊗Q). As TR(C) ≤ 1, it follows that TR(C ⊗Q) ≤ 1. Since
C is amenable and satisfies UCT, C ⊗Q is also a unital separable amenable simple C∗-algebra
which satisfies the UCT. It follows from Theorem 10.4 of [15] that C ⊗ Q is a unital simple
AH-algebra with no dimension growth. One computes that K0(C⊗Q) is torsion free. It follows
from Lemma 3.2 that A ∈ A1.

Corollary 3.4. Let A be a unital separable simple C∗-algebra. Suppose that TR(A ⊗ C) = 0
for some unital amenable separable simple C∗-algebra with TR(C) ≤ 1 which satisfies the UCT.
Then A ∈ A0.

Proof. The proof is similar to that of Theorem 3.3.

Corollary 3.5. Let A be a unital separable simple C∗-algebra. Suppose that TR(A ⊗ C) ≤ 1
for some unital simple AH-algebra C. Then A ∈ A1.

Proof. Note that by Theorem 10.4 of [15] , C⊗Q is a unital simple AH-algebra with no dimension
growth. Since TR(A⊗ C) ≤ 1, TR(A⊗ C ⊗Q) ≤ 1.

Proposition 3.6. Let A be a unital separable simple C∗-algebra. Then the following are quiv-
alent:

1) A ∈ A1.
2) A⊗ U ∈ A1 for some UHF-algebra U of infinite type.
3) A⊗ U ∈ A1 for any UHF-algebra U of infinite type.

Proof. “3) ⇒ 2)” is obvious.
“2) ⇒ 1)”: Suppose that A ⊗ U ∈ A1 for some UHF-algebra U of infinite type. Then

TR(A⊗U ⊗U) ≤ 1. But (A⊗U)⊗U ∼= A⊗U. We conclude that TR(A⊗U) ≤ 1. This implies
1) holds.

“1) ⇒ 3)”: Since A ∈ A1, TR(A ⊗ U) ≤ 1 for any UHF-algebra U of infinite type. In
particular, A⊗ U ∈ A1.
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4 Tensor Products

Proposition 4.1. Let A and B be two unital amenable separable simple C∗-algebras in C1. Then
A⊗B ∈ C1.

Proof. Let A,B ∈ C1. Then

(A⊗B)⊗Q∼=(A⊗B)⊗ (Q⊗Q)∼=(A⊗Q)⊗ (B ⊗Q).

Since both A and B are in C1, A ⊗ Q and B ⊗ Q have tracial rank no more than one and
satisfy the UCT. Therefore each of them is isomorphic to some unital simple AH-algebars with
no dimension growth. It is then easy to see that (A⊗Q)⊗ (B ⊗Q) can be written as a unital
simple AH-algebra with no dimension growth, which implies that TR(A⊗B ⊗Q) ≤ 1.

Theorem 4.2. Let A be a unital separable simple C∗-algebra. Suppose that there exists a unital
separable simple amenable C∗-algebra B ∈ C1 such that A⊗B ∈ A1, then A ∈ A1.

Proof. Since A⊗ B ∈ A1, TR(A⊗ B ⊗Q) ≤ 1. As B ∈ C1, we have that B ⊗Q satisfies UCT
and TR(B ⊗ Q) ≤ 1. By Lemma 10.9 and Theorem 10.10 of [12], B ⊗ Q is a unital simple
AH-algebra with no dimension growth. Note that Tor(K0(B ⊗Q)) = 0. It follows from Lemma
3.2 that A ∈ A1.

We now consider the converse of Theorem 3.3 in the following sense. Let A ∈ A1. Is it
true that TR(A⊗C) ≤ 1 if C is a unital separable infinite dimensional simple C∗-algebra with
TR(C) ≤ 1?

Definition 4.3. Let A be a unital separable simple C∗-algebra. We say A has the property of
tracially approximate divisibility, if the following holds: For any ǫ > 0, any finite subset F ⊂ A,
any a ∈ A+ \ {0}, any integer N ≥ 1, there exists a projection p ∈ A, a finite dimensional
C∗-subalgebra B ⊂ A with 1B = p and

B = Mn1 ⊕Mn2 ⊕ · · · ⊕Mnk

such that nj ≥ N for j = 1, 2, ..., k, and

‖px− xp‖ < ǫ for all x ∈ F (e 4.40)

‖b(pxp)− (pxp)b‖ < ǫ for all x ∈ F , b ∈ B with ‖b‖ ≤ 1 and (e 4.41)

1− p . a. (e 4.42)

It is proved in Theorem 5.4 of [12] that every unital infinite dimensional separable simple
C∗-algebra A with TR(A) ≤ 1 is tracially approximately divisible.

Lemma 4.4. Let A be a unital infinite dimensional separable C∗-algebra and let B be a unital
separable simple C∗-algebra which is tracially approximately divisible. Then, for any non-zero
projection p ∈ A ⊗ B and any integer n ≥ 1, there are n + 1 mutually orthogonal non-zero
projections p1, p2, ..., pn and pn+1 such that p is equivalent to

∑n+1
j=1 pj and [p1] = [p2] = · · · =

[pn].

Proof. Let C = A⊗B. Then pCp is a unital infinite dimensional simple C∗-algebra. Therefore
pCp contains a positive element 0 ≤ f0 ≤ 1 with infinite spectrum. From here, using the fact
that pCp is simple, one obtains two non-zero mutually orthogonal elements f1, f2 . f0 such
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that 2[f1] ≤ [p] in the Cuntz semigroup. Fix n ≥ 1. There are K ∈ N, a1, a2, ..., aK ∈ A and
b1, b2, ..., bK ∈ B such that

‖p−
K
∑

i=1

ai ⊗ bi‖ < 1/64(n + 1)2. (e 4.43)

Let M = K2max{(‖ai‖ + 1)(‖bi‖+ 1) : 1 ≤ i ≤ K}. Since B is tracially approximately
divisible, there is a projection e ∈ B and D ⊂ B with 1D = e,

D = Mn1 ⊕Mn2 ⊕ · · ·Mnm

with nj ≥ 4n + 1, j = 1, 2, ...,m, such that

‖ebj − bje‖ < 1/64(M + 1)(n + 1)2, j = 1, 2, ...,K, (e 4.44)

‖debje− ebjed‖ < 1/64(M + 1)(n + 1)2 (e 4.45)

for all d ∈ D with ‖d‖ ≤ 1, j = 1, 2, ...,K (e 4.46)

and 1B − e . f1. (e 4.47)

It follows that

‖ep− pe‖ < 1/64(n + 1)2, (e 4.48)

‖depe − eped‖ < 1/64(n + 1)2 (e 4.49)

for all d ∈ D with ‖d‖ ≤ 1, j = 1, 2, ..., L (e 4.50)

and 1A⊗B − 1A ⊗ e . f1. (e 4.51)

One notes that epe 6= 0, by (e 4.51).
It is easy to produce a projection e0 ∈ D and n − 1 unitaries u1, u2, ..., un−1 ∈ D such that

e0, u
∗
je0uj (for j = 1, 2, ..., n − 1) are mutually orthogonal projections in D. By (e 4.50), one

obtains a projection p1, unitaries v1, v2, ..., vn−1 such that

p1, v
∗
1p1v1, v

∗
2p1v2, ..., v

∗
n−1p1vn−1 (e 4.52)

are mutually orthogonal projections such that

‖p1 − e0pe0‖ < 1/16(n + 1)2, (e 4.53)

‖v∗j p1vj − u∗je0pe0uj‖ < 1/16(n + 1), , j = 1, 2, ..., n − 1 and (e 4.54)

‖e1pe1 − (p1 ⊕
n−1
∑

j=1

v∗j p1vj)‖ < 1/16, (e 4.55)

where e1 = e0⊕
∑n−1

j=1 u
∗
je0uj ∈ D. Define pj+1 = v∗j p1vj , j = 1, 2, ..., n−1. There is a projection

pn+1 ∈ (1− e1)(A⊗B)(1− e1) such that

‖pn+1 − (1− e1)p(1− e1)‖ < 1/16(M + 1)(n + 1)2. (e 4.56)

One verifies that p is equivalent to
∑n+1

k=1 pk. The lemma then follows.

Lemma 4.5. Let A be a unital separable infinite dimensional simple C∗-algebra with T (A) 6= ∅
and B be a unital separable simple C∗-algebra which is tracially approximately divisible and also
has at least one tracial state. Suppose that A ⊗ B has the strictly comparison for projections.
Then, for any non-zero projections p, q ∈ A⊗B and any integer n ≥ 1, there are n+1 mutually
orthogonal non-zero projections p1, p2, ..., pn, pn+1 such that p = p1 + . . . + pn + pn+1, pj is
equivalent to p1 for j = 1, 2, ..., n, pn+1 . p1 and pn+1 . q.
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Proof. The proof is similar to that of 4.4. Put C = A⊗B. Choose an integer m ≥ 1 such that

inf{τ(q) : τ ∈ T (C)} >
1

m+ n
. (e 4.57)

By Lemma 4.4, there is a non-zero projection p0 ≤ p such that τ(p0) <
1

4(m+n) for all τ ∈ T (C).

Let d = inf{τ(p0) : τ ∈ T (A)} > 0.
Since B is tracially approximately divisible, as in the proof of Lemma 4.4, there exists a

projection e ∈ B and D ⊂ B with 1D = e,

D = Mr1 ⊕Mr2⊕ · · · ⊕Mrk

with
n

rj
< d/2, j = 1, 2, ..., k (e 4.58)

such that

‖ep − pe‖ <
1

64(n + 1)2
(e 4.59)

‖d(epe) − (epe)d‖ <
1

64(n + 1)2
for all d ∈ D with ‖d‖ ≤ 1 (e 4.60)

and 1− e . p0. (e 4.61)

By (e 4.58), there is a projection e0 and n − 1 uniatries u1, u2, ..., un−1 ∈ D such that
e0, u

∗
1e0u1, u

∗
2e0u2, ..., u

∗
n−1e0un−1 are mutually orthogonal projections in D such that

τ(e− (e0 +

n−1
∑

j=1

u∗je0uj)) < d for all τ ∈ T (A). (e 4.62)

It follows that

(e− (e0 +

n−1
∑

j=1

u∗je0uj)) . p0. (e 4.63)

We then obtain a projection p1 ∈ C and unitaries v1, v2, ..., vn−1 such that p1, v
∗
1p1v1, ...,

v∗n−1p1vn−1 are mutually orthogonal and

‖p1 − e0pe0‖ < 1/16(n + 1), (e 4.64)

‖v∗j p1vj − u∗je0pe0uj‖ < 1/16(n + 1) and (e 4.65)

‖e1pe1 − (p1 +
n−1
∑

j=1

v∗j p1vj)‖ < 1/16, (e 4.66)

where e1 = e0+
∑n−1

j=1 u
∗
je0uj ∈ D. There is also a projection pn+1 ∈ (1− e1)C(1− e1) such that

‖pn+1 − (1− e1)p(1− e1)‖ < 1/64(n + 1)2. (e 4.67)

Put pj+1 = v∗jp1vj, j = 1, 2, ..., n − 1. Thus, we have

[p] = [

n+1
∑

j=1

pj]. (e 4.68)

We see that p1, p2, ..., pn are equivalent. Since C has strictly comparison, by (e 4.57), (e 4.58)
and (e 4.62),

pn+1 . p1 and pn+1 . q.
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Lemma 4.6. Let A ∈ C1. Suppose that B is a unital separable amenable simple C∗-algebra with
TR(B) ≤ 1 and satisfies UCT. Then K0(A⊗B) has the Reisz interpolation property.

Proof. Since A ∈ C1 and TR(B) ≤ 1, by Theorem 4.1, A ⊗ B ∈ C1. It follows from [18] that
K0(A ⊗ B) is rationally Reisz. In other words, if we have x1, x2, y1, y2 ∈ K0(A ⊗ B) such that
xi ≤ yj, i, j = 1, 2, then there exists z ∈ K0(A⊗B) and there are integers m,n ∈ N such that

mxi ≤ nz and nz ≤ myj, i, j = 1, 2. (e 4.69)

Denote by Su(K0(A ⊗ B)) the state space of K0(A ⊗ B). If mx1 = nz = my1, we claim that
x1 = y1. Otherwise y1 = x1 + w for some w ∈ Tor(K0(A ⊗ B)). But x1 ≤ y1. It would imply
that w ≥ 0. By 4.1 A ⊗ B ∈ C1. It follows that K0(A ⊗ B) is weakly unperforated. if w 6= 0,
s(w) > 0 for all states s ∈ Su(K0(A⊗B)). But this is impossible since mw = 0. Now if x1 = y1,
set z1 = x1. Then

xi ≤ y1 = z1 = x1 ≤ yj, i, j = 1, 2.

Let us consider the case that mxi 6= nz, i = 1, 2. It follows that

s(xi) < (n/m)s(z) ≤ s(yj) for all s ∈ Su(K0(A⊗B)), i, j = 1, 2. (e 4.70)

We may assume that xi ∈ K0(A⊗B)+ for i = 1, 2. It follows that z ∈ K0(A⊗B)+ \ {0}. Note
that Su(K0(A⊗B)) is compact. There exists 1 > d > 0 such that

s(xi) < (n/m)s(z)− d < s(yj) for all s ∈ Su(K0(A⊗B)), i, j = 1, 2. (e 4.71)

By replacing z by kz for some k ∈ N, if necessarily, we may assume that 0 < n/m < 1. Then,
by Lemma 4.5, there is w ∈ K0(A⊗B)+ such that nz = mw + w0 and

s(w0) < d for all s ∈ Su(K0(A⊗B)). (e 4.72)

Let z1 = mw. Note that n/m < 1, we then have

s(xi) < s(z1) < s(yj) for all x ∈ Su(K0(A⊗B)). (e 4.73)

Note that, by Corollary 8.4 of [16], B is Z-stable. It follows that A⊗B is Z-stable. According
to Corollary 4.10 of [22], we have that

xi ≤ z1 ≤ yj i, j = 1, 2. (e 4.74)

This shows that K0(A⊗B) has the Riesz interpolation property.

Theorem 4.7. Let A ∈ C1. Then, for any unital infinite dimensional simple AH-algebra B with
slow dimension growth, A⊗B is a unital simple AH-algebra with no dimension growth.

Proof. Since A ∈ C1, it follows from 4.1 that A⊗B ∈ C1. By Lemma 4.6, K0(A⊗B) has the Riesz
interpolation property. Since B is an infinite dimensional simple AH-algebra, K0(A ⊗ B) 6= Z.
Moreover the canonical map r : T (A⊗B) → Su(K0(A⊗B)) maps the extremal points to extremal
points. It follows from [24] that there is a unital simple AH-algebra C with no dimension growth
such that the Elliott invariant is exactly the same as that of A⊗B. According to Theorem 10.4
of [15], we have that A⊗B ∼= C.

We end the note by the following summarization:
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Theorem 4.8. Let A ∈ N be a unital separable simple amenable C∗-algebra that satisfies the
UCT. Then the following are equivalent.

(1) A ∈ C1;
(2) TR(A⊗Q) ≤ 1;
(3) A⊗Q ∈ A1;
(4) TR(A⊗B) ≤ 1 for some unital infinite dimensional simple AF-algebra B;
(5) TR(A⊗B) ≤ 1 for all unital simple infinite dimensional AF-algebras B;
(6) A⊗B ∈ A1 for some unital simple infinite dimensional AF-algebra B;
(7) A⊗B ∈ A1 for all unital simple infinite dimensional AF-algebras B;
(8) TR(A ⊗ B) ≤ 1 for some unital infinite dimensional simple AH-algebra B with no

dimension growth;
(9) TR(A⊗B) ≤ 1 for all unital simple infinite dimensional AH-algebras B with no dimen-

sion growth;
(10) A⊗B ∈ A1 for some unital simple infinite dimensional AH-algebra B with no dimension

growth;
(11) A⊗B ∈ A1 for all unital simple infinite dimensional AH-algebra B with no dimension

growth;
(12) A⊗B ∈ A1 for all unital simple infinite dimensional C∗-algebra B in C1;
(13) A⊗B ∈ A1 for some unital simple infinite dimensional C∗-algebra B ∈ C1.

Proof. Note that “(1) ⇒ (2)”, “(2) ⇒ (3)”, “(5) ⇒ (4)”, “(4) ⇒ (6)”, “(7) ⇒ (6)”, “(9) ⇒ (8)”,
“(9) ⇒ (10)”, “(11) ⇒ (10)”, “(11) ⇒ (7)”, “(12) ⇒ (11)”, “(12) ⇒ (7)” and “(12) ⇒ (13)” are
straightforward from the statement.

That “(1) ⇒ (5)” and “(1) ⇒ (9)” follow from 4.7. To see that “(1) ⇒ (12),” let A ∈ C1
and B ∈ C1. Then TR(B⊗Q) ≤ 1. So B⊗Q is a unital simple infinite dimensional AH-algebra
with no dimension growth. Since “(1) ⇒ (9)”, this implies that TR(A⊗ (B⊗Q)) ≤ 1. It follows
that A⊗B ∈ A1.

For “(13) ⇒ (1)”, one has TR(A ⊗ B ⊗ Q) ≤ 1. It follows that TR(A ⊗ (B ⊗ Q)) ≤ 1.
Since TR(B ⊗Q) ≤ 1, again, B ⊗Q is a unital simple infinite dimensional AH-algebra with no
dimension growth. It follows from 3.3 that A ∈ A1. As A ∈ N , it is in C1.

That “(3) ⇒ (1)” follows from 3.6 and “(4) ⇒ (1) follows from 3.1.
For “(6) ⇒ (4)”, one considers A ⊗ B ⊗ Q and notes B ⊗ Q is a unital simple infinite

dimensional AF-algebra.
That “(8) ⇒ (4)” follows from 3.3.
The rest of implications follow similarly as established previously.
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