Tensor Products of Classifiable C^* -algebras

Huaxin Lin and Wei Sun

Abstract

Let \mathcal{A}_1 be the class of all unital separable simple C^* -algebras A such that $A \otimes U$ has tracial rank at most one for all UHF-algebras of infinite type. It has been shown that amenable \mathcal{Z} -stable C^* -algebras in \mathcal{A}_1 which satisfy the Universal Coefficient Theorem can be classified up to isomorphism by the Elliott invariant. We show that $A \in \mathcal{A}_1$ if and only if $A \otimes B$ has tracial rank at most one for one of unital simple infinite dimensional AF-algebra B. In fact, we show that $A \in \mathcal{A}_1$ if and only if $A \otimes B \in \mathcal{A}_1$ for some unital simple AH-algebra B. Other results regarding the tensor products of C^* -algebras in \mathcal{A}_1 are also obtained.

1 Introduction

The Elliott program of classification of amenable C^* -algebras is to classify separable amenable C^* -algebras up to isomorphisms by its K-theoretic data known as the Elliott invariants. It is a very successful program. Two important classes of unital separable simple C^* -algebras, the class of amenable separable purely infinite simple C^* -algebras satisfying the Universal Coefficient Theorem (UCT) and unital simple AH-algebras with no dimension growth are classified by their Elliott invariants (see [9] and [5] and [6] among many literatures). There are a number of other significant progress in the Elliott program. Related to this note, it has been shown that unital separable amenable simple C^* -algebras with tracial rank at most one which satisfy the UCT are classifiable by the Elliott invariants and they are isomorphic to unital simple AH-algebras with no dimension growth. More recently it was shown in [17] that unital separable amenable simple \mathcal{Z} -stable C^{*}-algebras which satisfy the UCT and are rationally tracial rank at most one are also classifiable by the Elliott invariants (see also [19] and [26]). This class is significantly larger than the class of all unital simple AH-algebras with no dimension growth. A unital separable simple C^* -algebra A is said to be rationally tracial rank at most one if $A \otimes U$ has tracial rank at most one for every UHF-algebra U of infinite type. Denote by \mathcal{A}_1 the class of all unital separable simple C^* -algebra which are rationally tracial rank at most one. A special unital separable simple C^* -algebra in \mathcal{A}_1 which does not have finite tracial rank is the Jiang-Su algebra \mathcal{Z} . The range of the Elliott invariant for rationally tracial rank at most one has been characterized and computed ([18]). This class of C^* -algebras includes C^* -algebras whose ordered K_0 -groups may not have the Riesz interpolation property. The verification that a particular unital simple C^* -algebra is in the class \mathcal{A}_1 was slightly eased when it was proved in [18] that, $A \in \mathcal{A}_1$ if and only if $A \otimes U$ has tracial rank at most one for some UHF-algebra U of infinite type (instead for all UHF-algebras of infinite type). Suppose A is a unital separable simple C^* -algebra such that $A \otimes B$ has tracial rank at most one for some unital infinite dimensional simple AF-algebra B. Does it follow that $A \in \mathcal{A}_1$? We will answer this question affirmatively in this short note. In fact, we will show that if $A \otimes B$ has tracial rank at most one for some unital infinite dimensional separable simple C^{*}-algebra B with tracial rank at most one then $A \in \mathcal{A}_1$. This may provide a better way to determine which C^* -algebras are in \mathcal{A}_1 .

For the classification purpose, we also consider C_1 the class of all unital separable simple amenable C^* -algebras which are rationally tracial rank at most one and which satisfy the UCT. We will show that if A and B are both in C_1 , then $A \otimes B \in C_1$. Now suppose that $A \in C_1$ and B has tracial rank at most one. Then, from the above, $A \otimes B$ is also in C_1 . One may also ask whether $A \otimes B$ has tracial rank at most one? We will give an affirmative answer to this question.

2 Preliminaries

Definition 2.1. let A be a C^{*}-algebra. Let \mathcal{F} and \mathcal{G} be two subsets. Let $\epsilon > 0$. We say that $\mathcal{F} \subset_{\epsilon} \mathcal{G}$ if for each $x \in \mathcal{F}$, there exists $y \in \mathcal{G}$, such that $||x - y|| < \epsilon$.

If $a, b \in A_+$ are two elements in a C^{*}-algebra A, we write $a \leq b$ if there exists $x \in A$ such that $xx^* = a$ and $x^*x \in \overline{bAb}$.

In C^* -algebra A, let $\mathcal{F} \subset A$ be a finite subset and let $p \in A$ be a projection. We use $p\mathcal{F}p$ to denote $\{pxp: x \in \mathcal{F}\}$. Let B be a subalgebra of A and let $\epsilon > 0$. We write $\mathcal{F} \subset_{\epsilon} B$ if $\operatorname{dist}(x, B) < \epsilon$ for all $x \in \mathcal{F}$.

Definition 2.2. Denote by \mathcal{I}_1 the class of all finite direct sums of C^* -algebras of the form $M_n(C([0,1]))$ (for different integers $n \in \mathbb{N}$).

Recall that a unital simple C^* -algebra A has tracial rank at most one, if the following holds: For any $\epsilon > 0$, any finite subset $\mathcal{F} \subset A$ and any $a \in A_+ \setminus \{0\}$, there exists a projection $p \in A$ and there exists a C^* -subalgebra $B \subset A$ with $B \in \mathcal{I}_1$ and $\mathbf{1}_B = p$ such that

$$\|px - xp\| < \epsilon \text{ for all } x \in \mathcal{F}, \tag{e2.1}$$

$$p\mathcal{F}p \subset_{\epsilon} B$$
 and (e 2.2)

$$1-p \lesssim a.$$
 (e2.3)

Note that, in definition 2.7 of [13], \mathcal{I}_1 in the above is replaced by the class of all finite direct sums of C^* -algebras of the form $M_n(C(X))$, where X is one of finite CW complexes with dimension 1. According to Theorem 7.1 of [13], they are equivalent. If, in the above, \mathcal{I}_1 is replaced by \mathcal{I}_0 , the class of finite dimensional C^* -algebras, then A has tracial rank zero. If A has tracial rank at most one, we write $TR(A) \leq 1$. If A has tracial rank zero, we write TR(A) = 0.

Notations: Let A be a unital C^{*}-algebra. Denote by $M_{\infty}(A)$ the set of all finite rank matrices over A. Denote by T(A) the tracial state space of A. If $p \in M_{\infty}(A)$, then $p \in M_n(A)$ for some integer $n \geq 1$. We write $\tau(p)$ for $(\tau \otimes Tr)(p)$, where Tr is the standard trace on M_n .

Denote by \mathcal{N} the class of all unital separable amenable C^* -algebras which satisfy the Universal Coefficient Theorem.

Denote by Q the UHF-algebra with $(K_0(Q), K_0(Q)_+, [1_Q]) = (\mathbb{Q}, \mathbb{Q}_+, 1).$

We use \mathcal{A}_0 to denote the class of all unital separable simple C^* -algebras A for which $TR(A \otimes M_{\mathfrak{p}}) = 0$ for all supernatural numbers \mathfrak{p} of infinite type

Use \mathcal{A}_1 to denote the class of all unital separable simple C^* -algebras A for which $TR(A \otimes M_{\mathfrak{p}}) \leq 1$ for all supernatural numbers \mathfrak{p} of infinite type.

Use C_0 to denote the class of all unital separable simple amenable C^* -algebras A in \mathcal{N} for which $TR(A \otimes M_{\mathfrak{p}}) = 0$ for all supernatural numbers \mathfrak{p} of infinite type.

Use C_1 to denote the class of all unital separable simple amenable C^* -algebras A in \mathcal{N} for which $TR(A \otimes M_{\mathfrak{p}}) \leq 1$ for all supernatural numbers \mathfrak{p} of infinite type.

Definition 2.3. Let A be a unital C^* -algebra with $T(A) \neq \emptyset$. We say that A has the property of strict comparison for projections, if $\tau(p) < \tau(q)$ for all $\tau \in T(A)$ implies that $p \leq q$ for all projections in $M_{\infty}(A)$.

3 Criterions for C^* -algebras to be rationally tracial rank at most one

Theorem 3.1. Let A be a unital simple separable C^* -algebra, and let C be a unital infinite dimensional simple AF-algebra. Suppose that $A \otimes C$ has tracial rank at most one. Then $A \in A_1$.

Proof. Put $B = A \otimes Q$. Let $\epsilon > 0$, a nonzero element $a \in B_+ \setminus \{0\}$ and a finite subset $\mathcal{F} \subset B$ be given. We may assume that ||a|| = 1 and $\epsilon < 1/4$.

We will write $A \otimes Q = \lim_{k \to \infty} (A \otimes M_{k!}, j_k)$, where $j_k : A \otimes M_{k!} \to A \otimes M_{(k+1)!}$ by $j_k(a) = a \otimes 1_{M_{(k+1)}}$ for all $a \in A \otimes M_{k!}$, k = 1, 2, ... Without loss of generality, we may assume that $\mathcal{F} \subset A \otimes M_{k!}$ for some $k \ge 1$.

Without loss of generality, we may assume that there exists a positive element $a' \in A \otimes M_{k!}$ such that $||a - a'|| < \epsilon$. Let

$$f_{\epsilon}(t) = \begin{cases} 1 & t \ge 2\epsilon \\ (1/\epsilon)t - 1 & \epsilon < t < 2\epsilon \\ 0 & t \le \epsilon \end{cases}$$

According to Proposition 2.2 and Lemma 2.3 (b) of [21], $f_{\epsilon}(a') \leq a$. Put $a_0 = f_{\epsilon}(a')$. As $||a|| = 1, \epsilon < 1/4$, it is clear that $a_0 \in (A \otimes M_{k!})_+ \setminus \{0\}$.

Write C as $\lim_{m\to\infty} (C_m, i'_m)$, where C_m is a finite dimensional C^* -algebra and where $i'_m : C_m \to C_{m+1}$, is a unital embedding. Since C is an infinite dimensional unital simple AF-algebra, we may write that

$$C_m = M_{n_1} \oplus M_{n_2} \oplus \dots \oplus M_{n_{s(m)}}, \qquad (e \, 3.4)$$

where $n_j \geq k!$, j = 1, 2, ..., s(m) for all large m. Fix one of such m. Thus one obtains a projection $q \in C_m$ so that $M_{k!}$ is a unital C^* -subalgebra of qC_mq . Put $e = 1 \otimes q$ and let $\varphi'_1 : M_{k!} \to qC_mq$ be a unital embedding. Define $\varphi_1 : A \otimes M_{k!} \to A \otimes qC_mq$ by $\varphi_1(a \otimes b) = a \otimes \varphi'_1(b)$ for all $a \in A$ and $b \in M_{k!}$.

It follows from Theorem 3.6 of [15] that $e(A \otimes C)e$ has tracial rank no more that one. Therefore there exists a projection $p \in e(A \otimes C)e$ and a C^* -subalgebra $I_0 \in \mathcal{I}_1$ (interval C^* algebras) of $e(A \otimes C)e$ with $1_{I_0} = p$,

 $||px - xp|| < \epsilon/2 \text{ for all } x \in \varphi_1(\mathcal{F}),$ (e 3.5)

dist
$$(pxp, I_0) < \epsilon/2$$
 for all $x \in \varphi_1(\mathcal{F})$ and (e 3.6)

$$1 - p \lesssim \varphi_1(a_0). \tag{e3.7}$$

Let $K_0 = \max_{x \in \mathcal{F}} \{ \|x\| \}$ and let $K = \max(K_0, 16)$. Choose a finite set \mathcal{G}_0 in I_0 , such that $p\mathcal{F}p \subset_{\epsilon/16} \mathcal{G}_0$. Let \mathcal{G}_1 be a finite generator set of I_0 and let $\mathcal{G} = \mathcal{G}_0 \cup \mathcal{G}_1 \cup \{1_{I_0}\}$. Since I_0 is weakly semi-projective, according to Lemma 15.2.1 of [20], for n large enough, there exists a homomorphism $h: I_0 \to A \otimes (qC_nq)$ such that $\|h(y) - y\| < \epsilon/K$ for all $y \in \mathcal{G}$. In particular, h(p) is a projection in $A \otimes (qC_nq)$ such that $\|p - h(p)\| < \epsilon/8$. As $\epsilon < 1/4$, we know that p and h(p) are untarily equivalent.

It can be checked that

 $\|h(p)x - xh(p)\| < 5\epsilon/8 \text{ for all } x \in \varphi_1(\mathcal{F}), \qquad (e 3.8)$

$$\operatorname{dist}(h(p)xh(p), h(I_0)) < 11\epsilon/16 \text{ for all } x \in \varphi_1(\mathcal{F}) \text{ and}$$
 (e3.9)

$$1 - h(p) \lesssim \varphi_1(a_0). \tag{e3.10}$$

To simplify notation, we may assume that $I_0 \subset A \otimes qC_n q$, where $p \in A \otimes qC_n q$ for some large n satisfying $n \geq m$. Write $qC_n q = M_{m_1} \oplus M_{m_2} \oplus \cdots \oplus M_{m_r}$. Note that $k!|m_j$ for j = 1, 2, ..., r,

as φ'_1 is unital. Put $N = \sum_{j=1}^r m_j$. Therefore there is a unital embedding $\varphi'_2 : qC_nq \to M_{N!}$. Consider $j_k : M_{k!} \to M_{N!}$ and $\varphi'_2 \circ \varphi'_1 : M_{k!} \to M_{N!}$. Since they both are unital, there is a unitary $u \in M_{N!}$ such that

$$\mathrm{Ad} u \circ \varphi_2' \circ \varphi_1' = j_k.$$

Define $\varphi_2: A \otimes qC_n q \to A \otimes M_{N!}$ by

$$\varphi_2(a \otimes b) = a \otimes (\operatorname{Ad} u \circ \varphi_2'(b))$$

for all $a \in A$ and $b \in qC_nq$.

Then

$$(\varphi_2 \circ \varphi_1)(c) = c \text{ for all } c \in A \otimes M_{k!}.$$
(e3.11)

Put $p_1 = \varphi_2(p) \in A \otimes M_{N!} \subset A \otimes Q$ and $D = \varphi_2(I_0) \subset A \otimes M_{N!} \subset A \otimes Q$ with $1_D = p_1$. Note also $D \in \mathcal{I}_1$ (interval algebras). Moreover, by (e 3.5) and (e 3.6), we have

$$\|p_1x - xp_1\| = \|\varphi_2(p\varphi_1(x) - \varphi_1(x)p)\| = \|p\varphi_1(x) - \varphi_1(x)p\| < \epsilon/2 \text{ for all } x \in \mathcal{F}; \text{ (e 3.12)}$$

$$\operatorname{dist}(p_1xp_1, D) \le \operatorname{dist}(p\varphi_1(x)p, I_0) < \epsilon/2 \text{ for all } x \in \mathcal{F}.$$

$$(e 3.13)$$

Moreover, by (e 3.7),

$$1 - p_1 = \varphi_2(1 - p) \lesssim \varphi_2(\varphi_1(a)) = a.$$
 (e 3.14)

This implies that $TR(A \otimes Q) \leq 1$, which shows that $A \in \mathcal{A}_1$.

Lemma 3.2. Let A be a unital separable simple C^* -algebra and let C be a unital simple AHalgebra with $\operatorname{Tor}(K_0(C)) = \{0\}$ and with no dimension growth. Suppose that $A \otimes C$ has tracial rank no more than one. Then $A \in \mathcal{A}_1$.

Proof. Note that $Tor(K_0(C)) = \{0\}$, by Lemma 8.1 of [7], $K_0(C)$ is an unperforated Riesz group. It follows from the Effros-Handelman-Shen theorem (Theorem 2.2 of [2]) that there exists a unital separable simple AF-algebra B with

$$(K_0(B), K_0(B)_+, [1_B]) = (K_0(C), K_0(C)_+, [1_C]).$$
(e 3.15)

We will show that $TR(A \otimes B) \leq 1$. For that, let $\epsilon > 0$, $\mathcal{F} \subset A \otimes B$ be a finite subset and let $a \in (A \otimes B)_+ \setminus \{0\}$. Without loss of generality, we may assume that $1/2 > \epsilon$, \mathcal{F} is a subset of the unit ball and ||a|| = 1.

We may assume that there are $a_{f,1}, a_{f,2}, \dots, a_{f,n(f)} \in A$ and $b_{f,1}, b_{f,2}, \dots, b_{f,n(f)} \in B$ such that

$$\|f - \sum_{i=1}^{n(f)} a_{f,i} \otimes b_{f,i}\| < \epsilon/16 \text{ for all } f \in \mathcal{F}.$$
 (e 3.16)

We may also assume that there exist $x_1, x_2, ..., x_{n(a)} \in A$ and $y_1, y_2, ..., y_{n(a)} \in B$ such that

$$\|a - \sum_{i=1}^{n(a)} x_i \otimes y_i\| < \epsilon/16.$$
 (e 3.17)

Let

$$K_1 = n(a) + \max\{n(f) : f \in \mathcal{F}\},$$
 (e 3.18)

$$K_2 = \max\{\|x_i\| + \|y_i\| : 1 \le i \le n(a)\} \text{ and}$$
 (e 3.19)

$$K_3 = \max\{\|a_{f,i}\| + \|b_{f,i}\| : 1 \le i \le n(f) \text{ and } f \in \mathcal{F}\}.$$
 (e 3.20)

Put $a_1 = f_{\epsilon}(a)$ with f_{ϵ} as defined in the proof of Theorem 3.1.

As B is an AF-algebra and C has stable rank one, it is known that there exists a unital homomorphism $\varphi'_1 : B \to C$ such that $(\varphi'_1)_*$ gives the identification (e 3.15). Define $\varphi_1 : A \otimes B \to A \otimes C$ by $\varphi_1 = \operatorname{id}_A \otimes \varphi'_1$. Now since $TR(A \otimes C) \leq 1$, there exists a projection $q \in A \otimes C$ and a C^* -subalgebra $D \in \mathcal{I}_1$ such that $1_D = p$ and

$$\|px - xp\| < \epsilon/16 \text{ for all } x \in \varphi_1(\mathcal{F}),$$
 (e 3.21)

dist
$$(pxp, D) < \epsilon/16$$
 for all $x \in \varphi_1(\mathcal{F})$ and (e 3.22)

$$1 - p \lesssim \varphi_1(a_1). \tag{e3.23}$$

Let $\kappa \in KL(C, B)$ such that $\kappa|_{K_1(C)} = 0$ and $\kappa|_{K_0(C)} = (\varphi'_1)^{-1}_{*0}$. It follows from [14] that there exists a unital embedding $\varphi'_2 : C \to B$ such that

$$[\varphi_2'] = \kappa. \tag{e 3.24}$$

Let

$$\mathcal{G} = \{ y_i : 1 \le i \le n(a) \} \cup \{ b_{f,i} : 1 \le i \le n(f) \text{ and } f \in \mathcal{F} \}.$$
 (e 3.25)

Put

$$\delta = \frac{\epsilon}{16K_1K_2K_3}.\tag{e 3.26}$$

Note that

$$[\varphi_2' \circ \varphi_1'] = [\mathrm{id}_B] \text{ in } KL(B, B).$$
(e 3.27)

According to Lemma 4.2 of [3], there exists a unitary $u \in B$ such that

$$\|(\operatorname{Ad} u \circ \varphi_2' \circ \varphi_1')(y) - y\| < \delta \text{ for all } y \in \mathcal{G}.$$
 (e 3.28)

Define $\varphi_2 : A \otimes C \to A \otimes B$ by $\varphi_2 = \mathrm{id}_A \otimes (\mathrm{Ad}\, u \circ \varphi'_2)$. Put $p_1 = \varphi_2(p)$ and $D_1 = \varphi_2(D)$. Then, one estimates, by (e 3.28) and (e 3.16), that

$$\|\varphi_2 \circ \varphi_1(f) - f\| < \epsilon/16 + \epsilon/16 + K_1 K_3 \delta < 3\epsilon/16 \text{ for all } f \in \mathcal{F}.$$
 (e 3.29)

Similarly,

$$\|\varphi_2 \circ \varphi_1(a) - a\| < \epsilon/16 + \epsilon/16 + K_1 K_2 \delta < 3\epsilon/16$$
 (e 3.30)

Thus, we have, by applying (e 3.21) and (e 3.29), that

$$||p_1 x - x p_1|| \leq ||p_1 x - \varphi_2(p) \varphi_2 \circ \varphi_1(x)||$$
 (e 3.31)

$$+\|\varphi_2(p)\varphi_2\circ\varphi_1(x)-\varphi_2\circ\varphi_1(x)\varphi_2(p)\| \tag{e3.32}$$

$$+\|\varphi_2 \circ \varphi_1(x)\varphi_2(p) - xp_1\| \tag{e3.33}$$

$$< 3\epsilon/16 + \|p\varphi_1(x) - \varphi_1(x)p\| + 3\epsilon/16 < 7\epsilon/16 \qquad (e \, 3.34)$$

for all $x \in \mathcal{F}$. Similarly,

$$\operatorname{dist}(p_1 x p_1, D_1) < 7\epsilon/16 \text{ for all } x \in \mathcal{F}.$$
(e 3.35)

Also, by (e 3.23),

$$1 - p_1 \lesssim \varphi_2(\varphi_1(a_1)). \tag{e3.36}$$

In other words,

$$1 - p_1 \lesssim f_{\epsilon}(\varphi_2 \circ \varphi_1(a)). \tag{e 3.37}$$

From (e 3.30) and Proposition 2.2 and Lemma 2.3 (b) of [21], we have

$$f_{\epsilon}(\varphi_2 \circ \varphi_1(a)) \lesssim a. \tag{e3.38}$$

It follows that

$$1 - p_1 \lesssim a. \tag{e3.39}$$

This proves that $A \otimes B$ has tracial rank no more than one.

Theorem 3.3. Let A be a unital separable simple C^* -algebra. Suppose that $TR(A \otimes C) \leq 1$ for some unital amenable separable simple C^* -algebra C such that $TR(C) \leq 1$ and C satisfies the UCT. Then $A \in A_1$.

Proof. Suppose that $TR(A \otimes C) \leq 1$. We may assume that C has infinite dimension. Otherwise, as C is simple, $C \cong M_n(\mathbb{C})$ for some $n \in \mathbb{N}$. With $TR(M_n(A)) \leq 1$, according to Theorem 3.6 in [15], $TR(A) \leq 1$. Therefore $A \in \mathcal{A}_1$.

Now assume that C is infinitely dimensional. As $TR(A \otimes C) \leq 1$, we have $TR((A \otimes C) \otimes Q) \leq 1$. Note that $(A \otimes C) \otimes Q \cong A \otimes (C \otimes Q)$. As $TR(C) \leq 1$, it follows that $TR(C \otimes Q) \leq 1$. Since C is amenable and satisfies UCT, $C \otimes Q$ is also a unital separable amenable simple C^* -algebra which satisfies the UCT. It follows from Theorem 10.4 of [15] that $C \otimes Q$ is a unital simple AH-algebra with no dimension growth. One computes that $K_0(C \otimes Q)$ is torsion free. It follows from Lemma 3.2 that $A \in A_1$.

Corollary 3.4. Let A be a unital separable simple C^* -algebra. Suppose that $TR(A \otimes C) = 0$ for some unital amenable separable simple C^* -algebra with $TR(C) \leq 1$ which satisfies the UCT. Then $A \in \mathcal{A}_0$.

Proof. The proof is similar to that of Theorem 3.3.

Corollary 3.5. Let A be a unital separable simple C^* -algebra. Suppose that $TR(A \otimes C) \leq 1$ for some unital simple AH-algebra C. Then $A \in A_1$.

Proof. Note that by Theorem 10.4 of [15], $C \otimes Q$ is a unital simple AH-algebra with no dimension growth. Since $TR(A \otimes C) \leq 1$, $TR(A \otimes C \otimes Q) \leq 1$.

Proposition 3.6. Let A be a unital separable simple C^* -algebra. Then the following are quivalent:

- 1) $A \in \mathcal{A}_1$.
- 2) $A \otimes U \in \mathcal{A}_1$ for some UHF-algebra U of infinite type.
- 3) $A \otimes U \in \mathcal{A}_1$ for any UHF-algebra U of infinite type.

Proof. "3) \Rightarrow 2)" is obvious.

"2) \Rightarrow 1)": Suppose that $A \otimes U \in \mathcal{A}_1$ for some UHF-algebra U of infinite type. Then $TR(A \otimes U \otimes U) \leq 1$. But $(A \otimes U) \otimes U \cong A \otimes U$. We conclude that $TR(A \otimes U) \leq 1$. This implies 1) holds.

"(1) \Rightarrow 3)": Since $A \in \mathcal{A}_1$, $TR(A \otimes U) \leq 1$ for any UHF-algebra U of infinite type. In particular, $A \otimes U \in \mathcal{A}_1$.

4 Tensor Products

Proposition 4.1. Let A and B be two unital amenable separable simple C^* -algebras in C_1 . Then $A \otimes B \in C_1$.

Proof. Let $A, B \in \mathcal{C}_1$. Then

$$(A \otimes B) \otimes Q \cong (A \otimes B) \otimes (Q \otimes Q) \cong (A \otimes Q) \otimes (B \otimes Q).$$

Since both A and B are in C_1 , $A \otimes Q$ and $B \otimes Q$ have tracial rank no more than one and satisfy the UCT. Therefore each of them is isomorphic to some unital simple AH-algebras with no dimension growth. It is then easy to see that $(A \otimes Q) \otimes (B \otimes Q)$ can be written as a unital simple AH-algebra with no dimension growth, which implies that $TR(A \otimes B \otimes Q) \leq 1$.

Theorem 4.2. Let A be a unital separable simple C^* -algebra. Suppose that there exists a unital separable simple amenable C^* -algebra $B \in C_1$ such that $A \otimes B \in A_1$, then $A \in A_1$.

Proof. Since $A \otimes B \in \mathcal{A}_1$, $TR(A \otimes B \otimes Q) \leq 1$. As $B \in \mathcal{C}_1$, we have that $B \otimes Q$ satisfies UCT and $TR(B \otimes Q) \leq 1$. By Lemma 10.9 and Theorem 10.10 of [12], $B \otimes Q$ is a unital simple AH-algebra with no dimension growth. Note that $Tor(K_0(B \otimes Q)) = 0$. It follows from Lemma 3.2 that $A \in \mathcal{A}_1$.

We now consider the converse of Theorem 3.3 in the following sense. Let $A \in \mathcal{A}_1$. Is it true that $TR(A \otimes C) \leq 1$ if C is a unital separable infinite dimensional simple C*-algebra with $TR(C) \leq 1$?

Definition 4.3. Let A be a unital separable simple C^* -algebra. We say A has the property of tracially approximate divisibility, if the following holds: For any $\epsilon > 0$, any finite subset $\mathcal{F} \subset A$, any $a \in A_+ \setminus \{0\}$, any integer $N \ge 1$, there exists a projection $p \in A$, a finite dimensional C^* -subalgebra $B \subset A$ with $1_B = p$ and

$$B = M_{n_1} \oplus M_{n_2} \oplus \dots \oplus M_{n_k}$$

such that $n_j \geq N$ for j = 1, 2, ..., k, and

 $\|px - xp\| < \epsilon \text{ for all } x \in \mathcal{F} \tag{e4.40}$

$$||b(pxp) - (pxp)b|| < \epsilon \text{ for all } x \in \mathcal{F}, b \in B \text{ with } ||b|| \le 1 \text{ and}$$
 (e4.41)

$$1 - p \lesssim a. \tag{e} 4.42$$

It is proved in Theorem 5.4 of [12] that every unital infinite dimensional separable simple C^* -algebra A with $TR(A) \leq 1$ is tracially approximately divisible.

Lemma 4.4. Let A be a unital infinite dimensional separable C^* -algebra and let B be a unital separable simple C^* -algebra which is tracially approximately divisible. Then, for any non-zero projection $p \in A \otimes B$ and any integer $n \ge 1$, there are n + 1 mutually orthogonal non-zero projections $p_1, p_2, ..., p_n$ and p_{n+1} such that p is equivalent to $\sum_{j=1}^{n+1} p_j$ and $[p_1] = [p_2] = \cdots = [p_n]$.

Proof. Let $C = A \otimes B$. Then pCp is a unital infinite dimensional simple C^* -algebra. Therefore pCp contains a positive element $0 \leq f_0 \leq 1$ with infinite spectrum. From here, using the fact that pCp is simple, one obtains two non-zero mutually orthogonal elements $f_1, f_2 \leq f_0$ such

that $2[f_1] \leq [p]$ in the Cuntz semigroup. Fix $n \geq 1$. There are $K \in \mathbb{N}$, $a_1, a_2, ..., a_K \in A$ and $b_1, b_2, ..., b_K \in B$ such that

$$\|p - \sum_{i=1}^{K} a_i \otimes b_i\| < 1/64(n+1)^2.$$
 (e 4.43)

Let $M = K^2 \max\{(||a_i|| + 1)(||b_i|| + 1) : 1 \le i \le K\}$. Since B is tracially approximately divisible, there is a projection $e \in B$ and $D \subset B$ with $1_D = e$,

$$D = M_{n_1} \oplus M_{n_2} \oplus \cdots \oplus M_{n_m}$$

with $n_j \ge 4n + 1, j = 1, 2, ..., m$, such that

$$||eb_j - b_j e|| < 1/64(M+1)(n+1)^2, j = 1, 2, ..., K,$$
 (e 4.44)

- $||deb_j e eb_j ed|| < 1/64(M+1)(n+1)^2$ (e 4.45)
 - for all $d \in D$ with $||d|| \le 1, \ j = 1, 2, ..., K$ (e 4.46)

and
$$1_B - e \lesssim f_1$$
. (e 4.47)

It follows that

$$||ep - pe|| < 1/64(n+1)^2,$$
 (e 4.48)

$$\|depe - eped\| < 1/64(n+1)^2$$
 (e 4.49)

for all
$$d \in D$$
 with $||d|| \le 1, \ j = 1, 2, ..., L$ (e4.50)

and
$$1_{A\otimes B} - 1_A \otimes e \lesssim f_1.$$
 (e 4.51)

One notes that $epe \neq 0$, by (e 4.51).

It is easy to produce a projection $e_0 \in D$ and n-1 unitaries $u_1, u_2, ..., u_{n-1} \in D$ such that $e_0, u_j^* e_0 u_j$ (for j = 1, 2, ..., n-1) are mutually orthogonal projections in D. By (e4.50), one obtains a projection p_1 , unitaries $v_1, v_2, ..., v_{n-1}$ such that

$$p_1, v_1^* p_1 v_1, v_2^* p_1 v_2, \dots, v_{n-1}^* p_1 v_{n-1}$$
(e4.52)

are mutually orthogonal projections such that

$$|p_1 - e_0 p e_0|| < 1/16(n+1)^2, \tag{e4.53}$$

$$\|v_j^* p_1 v_j - u_j^* e_0 p e_0 u_j\| < 1/16(n+1), \ , \ j = 1, 2, ..., n-1 \ \text{and}$$
 (e 4.54)

$$\|e_1 p e_1 - (p_1 \oplus \sum_{j=1}^{n-1} v_j^* p_1 v_j)\| < 1/16,$$
(e 4.55)

where $e_1 = e_0 \oplus \sum_{j=1}^{n-1} u_j^* e_0 u_j \in D$. Define $p_{j+1} = v_j^* p_1 v_j$, j = 1, 2, ..., n-1. There is a projection $p_{n+1} \in (1-e_1)(A \otimes B)(1-e_1)$ such that

$$||p_{n+1} - (1 - e_1)p(1 - e_1)|| < 1/16(M + 1)(n + 1)^2.$$
(e 4.56)

One verifies that p is equivalent to $\sum_{k=1}^{n+1} p_k$. The lemma then follows.

Lemma 4.5. Let A be a unital separable infinite dimensional simple C^* -algebra with $T(A) \neq \emptyset$ and B be a unital separable simple C^* -algebra which is tracially approximately divisible and also has at least one tracial state. Suppose that $A \otimes B$ has the strictly comparison for projections. Then, for any non-zero projections $p, q \in A \otimes B$ and any integer $n \ge 1$, there are n+1 mutually orthogonal non-zero projections $p_1, p_2, ..., p_n, p_{n+1}$ such that $p = p_1 + ... + p_n + p_{n+1}, p_j$ is equivalent to p_1 for $j = 1, 2, ..., n, p_{n+1} \lesssim p_1$ and $p_{n+1} \lesssim q$. *Proof.* The proof is similar to that of 4.4. Put $C = A \otimes B$. Choose an integer $m \ge 1$ such that

$$\inf\{\tau(q): \tau \in T(C)\} > \frac{1}{m+n}.$$
 (e 4.57)

By Lemma 4.4, there is a non-zero projection $p_0 \leq p$ such that $\tau(p_0) < \frac{1}{4(m+n)}$ for all $\tau \in T(C)$. Let $d = \inf\{\tau(p_0) : \tau \in T(A)\} > 0$.

Since B is tracially approximately divisible, as in the proof of Lemma 4.4, there exists a projection $e \in B$ and $D \subset B$ with $1_D = e$,

$$D = M_{r_1} \oplus M_{r_2} \oplus \dots \oplus M_{r_k}$$

with

$$\frac{n}{r_j} < d/2, \ \ j = 1, 2, ..., k$$
 (e 4.58)

such that

$$\|ep - pe\| < \frac{1}{64(n+1)^2} \tag{e} 4.59$$

$$||d(epe) - (epe)d|| < \frac{1}{64(n+1)^2}$$
 for all $d \in D$ with $||d|| \le 1$ (e4.60)

$$1 - e \lesssim p_0. \tag{e4.61}$$

By (e4.58), there is a projection e_0 and n-1 uniatries $u_1, u_2, ..., u_{n-1} \in D$ such that $e_0, u_1^* e_0 u_1, u_2^* e_0 u_2, ..., u_{n-1}^* e_0 u_{n-1}$ are mutually orthogonal projections in D such that

$$\tau(e - (e_0 + \sum_{j=1}^{n-1} u_j^* e_0 u_j)) < d \text{ for all } \tau \in T(A).$$
(e 4.62)

It follows that

ar

$$(e - (e_0 + \sum_{j=1}^{n-1} u_j^* e_0 u_j)) \lesssim p_0.$$
 (e 4.63)

We then obtain a projection $p_1 \in C$ and unitaries $v_1, v_2, ..., v_{n-1}$ such that $p_1, v_1^* p_1 v_1, ..., v_{n-1}^* p_1 v_{n-1}$ are mutually orthogonal and

$$\|p_1 - e_0 p e_0\| < 1/16(n+1), \tag{e4.64}$$

$$||v_j^* p_1 v_j - u_j^* e_0 p e_0 u_j|| < 1/16(n+1)$$
 and (e 4.65)

$$\|e_1 p e_1 - (p_1 + \sum_{j=1}^{n-1} v_j^* p_1 v_j)\| < 1/16, \qquad (e \, 4.66)$$

where $e_1 = e_0 + \sum_{j=1}^{n-1} u_j^* e_0 u_j \in D$. There is also a projection $p_{n+1} \in (1-e_1)C(1-e_1)$ such that

$$||p_{n+1} - (1 - e_1)p(1 - e_1)|| < 1/64(n+1)^2.$$
 (e 4.67)

Put $p_{j+1} = v_j^* p_1 v_j$, j = 1, 2, ..., n - 1. Thus, we have

$$[p] = [\sum_{j=1}^{n+1} p_j].$$
 (e 4.68)

We see that $p_1, p_2, ..., p_n$ are equivalent. Since C has strictly comparison, by (e 4.57), (e 4.58) and (e 4.62),

$$p_{n+1} \lesssim p_1$$
 and $p_{n+1} \lesssim q$.

Lemma 4.6. Let $A \in C_1$. Suppose that B is a unital separable amenable simple C^* -algebra with $TR(B) \leq 1$ and satisfies UCT. Then $K_0(A \otimes B)$ has the Reisz interpolation property.

Proof. Since $A \in C_1$ and $TR(B) \leq 1$, by Theorem 4.1, $A \otimes B \in C_1$. It follows from [18] that $K_0(A \otimes B)$ is rationally Reisz. In other words, if we have $x_1, x_2, y_1, y_2 \in K_0(A \otimes B)$ such that $x_i \leq y_j$, i, j = 1, 2, then there exists $z \in K_0(A \otimes B)$ and there are integers $m, n \in \mathbb{N}$ such that

$$mx_i \le nz \text{ and } nz \le my_j, \ i, j = 1, 2.$$
 (e4.69)

Denote by $S_u(K_0(A \otimes B))$ the state space of $K_0(A \otimes B)$. If $mx_1 = nz = my_1$, we claim that $x_1 = y_1$. Otherwise $y_1 = x_1 + w$ for some $w \in \text{Tor}(K_0(A \otimes B))$. But $x_1 \leq y_1$. It would imply that $w \geq 0$. By 4.1 $A \otimes B \in \mathcal{C}_1$. It follows that $K_0(A \otimes B)$ is weakly unperforated. if $w \neq 0$, s(w) > 0 for all states $s \in S_u(K_0(A \otimes B))$. But this is impossible since mw = 0. Now if $x_1 = y_1$, set $z_1 = x_1$. Then

$$x_i \le y_1 = z_1 = x_1 \le y_j, \ i, j = 1, 2.$$

Let us consider the case that $mx_i \neq nz$, i = 1, 2. It follows that

$$s(x_i) < (n/m)s(z) \le s(y_j)$$
 for all $s \in S_u(K_0(A \otimes B)), i, j = 1, 2.$ (e4.70)

We may assume that $x_i \in K_0(A \otimes B)_+$ for i = 1, 2. It follows that $z \in K_0(A \otimes B)_+ \setminus \{0\}$. Note that $S_u(K_0(A \otimes B))$ is compact. There exists 1 > d > 0 such that

$$s(x_i) < (n/m)s(z) - d < s(y_j)$$
 for all $s \in S_u(K_0(A \otimes B)), i, j = 1, 2.$ (e4.71)

By replacing z by kz for some $k \in \mathbb{N}$, if necessarily, we may assume that 0 < n/m < 1. Then, by Lemma 4.5, there is $w \in K_0(A \otimes B)_+$ such that $nz = mw + w_0$ and

$$s(w_0) < d \text{ for all } s \in S_u(K_0(A \otimes B)).$$
(e4.72)

Let $z_1 = mw$. Note that n/m < 1, we then have

$$s(x_i) < s(z_1) < s(y_j)$$
 for all $x \in S_u(K_0(A \otimes B))$. (e4.73)

Note that, by Corollary 8.4 of [16], B is \mathbb{Z} -stable. It follows that $A \otimes B$ is \mathbb{Z} -stable. According to Corollary 4.10 of [22], we have that

$$x_i \le z_1 \le y_j \ i, j = 1, 2. \tag{e4.74}$$

This shows that $K_0(A \otimes B)$ has the Riesz interpolation property.

Theorem 4.7. Let $A \in C_1$. Then, for any unital infinite dimensional simple AH-algebra B with slow dimension growth, $A \otimes B$ is a unital simple AH-algebra with no dimension growth.

Proof. Since $A \in C_1$, it follows from 4.1 that $A \otimes B \in C_1$. By Lemma 4.6, $K_0(A \otimes B)$ has the Riesz interpolation property. Since B is an infinite dimensional simple AH-algebra, $K_0(A \otimes B) \neq \mathbb{Z}$. Moreover the canonical map $r: T(A \otimes B) \to S_u(K_0(A \otimes B))$ maps the extremal points to extremal points. It follows from [24] that there is a unital simple AH-algebra C with no dimension growth such that the Elliott invariant is exactly the same as that of $A \otimes B$. According to Theorem 10.4 of [15], we have that $A \otimes B \cong C$.

We end the note by the following summarization:

Theorem 4.8. Let $A \in \mathcal{N}$ be a unital separable simple amenable C^* -algebra that satisfies the UCT. Then the following are equivalent.

(1) $A \in \mathcal{C}_1$;

(2) $TR(A \otimes Q) \leq 1;$

 $(3) A \otimes Q \in \mathcal{A}_1;$

(4) $TR(A \otimes B) \leq 1$ for some unital infinite dimensional simple AF-algebra B;

(5) $TR(A \otimes B) \leq 1$ for all unital simple infinite dimensional AF-algebras B;

(6) $A \otimes B \in \mathcal{A}_1$ for some unital simple infinite dimensional AF-algebra B;

(7) $A \otimes B \in \mathcal{A}_1$ for all unital simple infinite dimensional AF-algebras B;

(8) $TR(A \otimes B) \leq 1$ for some unital infinite dimensional simple AH-algebra B with no dimension growth;

(9) $TR(A \otimes B) \leq 1$ for all unital simple infinite dimensional AH-algebras B with no dimension growth;

(10) $A \otimes B \in A_1$ for some unital simple infinite dimensional AH-algebra B with no dimension growth;

(11) $A \otimes B \in \mathcal{A}_1$ for all unital simple infinite dimensional AH-algebra B with no dimension growth;

(12) $A \otimes B \in \mathcal{A}_1$ for all unital simple infinite dimensional C^* -algebra B in \mathcal{C}_1 ;

(13) $A \otimes B \in \mathcal{A}_1$ for some unital simple infinite dimensional C^* -algebra $B \in \mathcal{C}_1$.

Proof. Note that "(1) \Rightarrow (2)", "(2) \Rightarrow (3)", "(5) \Rightarrow (4)", "(4) \Rightarrow (6)", "(7) \Rightarrow (6)", "(9) \Rightarrow (8)", "(9) \Rightarrow (10)", "(11) \Rightarrow (10)", "(11) \Rightarrow (7)", "(12) \Rightarrow (11)", "(12) \Rightarrow (7)" and "(12) \Rightarrow (13)" are straightforward from the statement.

That "(1) \Rightarrow (5)" and "(1) \Rightarrow (9)" follow from 4.7. To see that "(1) \Rightarrow (12)," let $A \in C_1$ and $B \in C_1$. Then $TR(B \otimes Q) \leq 1$. So $B \otimes Q$ is a unital simple infinite dimensional AH-algebra with no dimension growth. Since "(1) \Rightarrow (9)", this implies that $TR(A \otimes (B \otimes Q)) \leq 1$. It follows that $A \otimes B \in \mathcal{A}_1$.

For "(13) \Rightarrow (1)", one has $TR(A \otimes B \otimes Q) \leq 1$. It follows that $TR(A \otimes (B \otimes Q)) \leq 1$. Since $TR(B \otimes Q) \leq 1$, again, $B \otimes Q$ is a unital simple infinite dimensional AH-algebra with no dimension growth. It follows from 3.3 that $A \in \mathcal{A}_1$. As $A \in \mathcal{N}$, it is in \mathcal{C}_1 .

That "(3) \Rightarrow (1)" follows from 3.6 and "(4) \Rightarrow (1) follows from 3.1.

For "(6) \Rightarrow (4)", one considers $A \otimes B \otimes Q$ and notes $B \otimes Q$ is a unital simple infinite dimensional AF-algebra.

That "(8) \Rightarrow (4)" follows from 3.3.

The rest of implications follow similarly as established previously.

References

- Blackadar, Bruce. Kumjian, Alexander. Rordam, Mikael. "Approximate central units and the structure of noncommutative tori", K-theory. 6: 267-284, 1992.
- [2] Effros, Edward G.; Handelman, David E.; Shen, Chao-Liang. "Dimension Groups and Their Affine Representations", American Journal of Mathematics, Vol. 102, No. 2. (Apr., 1980), pp. 385-407.
- [3] Elliott, George A. "On the classification of inductive limits of sequences of semisimple finite-dimensional algebras", Journal of Algebra. 38, 29-44 (1976)

- [4] Elliott, George A. "Dimension groups with torsion", Internat. J. Math. Math. Sci. 1 (1990), 361-380.
- [5] Elliott, George A. Gong, Guihua, Li, Liangqing. "On the classification of simple inductive limit C^{*}-algebras. II, The isomorphism theorem", Invent. Math. 168 (2007), 249-320.
- [6] Gong, Guihua. "On the classification of simple inductive limit C*-algebras. I. The reduction theorem", Doc. Math. 7 (2002), 255-461
- [7] Goodearl, K. R. "K₀ of multiplier algebras of C^{*}-algebras with real rank zero", K-theory, 10: 419-489, 1996
- [8] Goodearl, K. R. "Decomposition in Inductive Limit C*-algebras", K-theory, 15: 1-12, 1998.
- [9] Kirchberg, Eberhard. Phillips, N. Christopher. "Embedding of exact C^{*}-algebras in the Cuntz algebra O₂", J. Reine Angew. Math. 525 (2000), 17-53
- [10] Lin, Huaxin. "An introduction to the classification of amenable C*-algebras", World Scientific Publishing Co., Inc., River Edge, NJ, 2001. xii+320 pp. ISBN: 981-02-4680-3
- [11] Lin, Huaxin. "Tracially AF C^{*}-algebras" Transaction of AMS. Volume 353, Number 2, Pages 693-722.
- [12] Lin, Huaxin. "Simple nuclear C^{*}-algebras of tracial topological rank one", J. Funct. Anal. 251 (2007) 601-679
- [13] Lin, Huaxin. "The tracial topological rank of C*-algebras", Proc. London Math. Soc. (3) 83 (2001) 199-234.
- [14] Lin, Huaxin. "Embedding an AH-algebra into a simple C^* -algebra with Prescribed KK-data"
- [15] Lin, Huaxin. "Simple nuclear C*-algebras of tracial topological rank one", J. Funct. Anal. 251 (2) (2007) 601-679.
- [16] Lin, Huaxin. "On Local AH algebras", http://arxiv.org/abs/1104.0445
- [17] Lin, Huaxin. "Asymptotically unitary equivalence and classification of simple amenable C^{*}algebras", Invent. Math (2011) 183: 385-450.
- [18] Lin, Huaxin. Niu, Zhuang. "The range of a class of classifiable simple amenable C^{*}algebras", J. Funct. Anal. 260 (2011), no. 1
- [19] Lin, Huaxin. Niu, Zhuang. "Lifting KK-elements, asymptotic unitary equivalence and classification of simple C^{*}-algebras", Adv. Math. 219 (2008), no. 5, 1729-1769
- [20] Loring, Terry. "Lifting solutions to perturbing problems in C*-algebras", Fields Institute Monograph, Vol 8, AMS Providence, RI, 1997.
- [21] Rørdam, Mikael. "On the structure of simple C*-algebras tensored with a UHF-algebra, II", Journal of Functional Analysis, 107, 255-269 (1992)
- [22] Rørdam, Mikael. "The stable and the real rank of Z-absorbing C*-algebras", International Journal of Mathematics, Vol. 15, No. 10 (2004) 1065-1084
- [23] Thomsen, Klause. "On the range of the Elliott invariant", J. Func. Anal. 221 (1994), 255-274.

- [24] Villadsen, Jesper. "The range of the Elliott invariant of the simple AH-algebras with slow dimension growth", K-theory. 15: 1-12, 1998.
- [25] Villadsen, Jesper. "The range of the Elliott invariant", J. reine angew. Math. 462 (1995), 31-55
- [26] Winter, Wilhelm. "Localizing the Elliott conjecture at strongly self-absorbing C^* -algebras", http://arxiv.org/abs/0708.0283